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Preface

The Digital Extended Math Library (DXML) is a collection of high performance
subprograms that perform different types of mathematical operations. DXML
is primarily used with Fortran programs, but it can be used with many other
languages. This book provides descriptions of the subprograms in the DXML
library. It does not describe specific applications of the subprograms.

Intended Audience
This book is a guide for scientists, mathematicians, engineers, computer
scientists, and programmers who want to write applications that call DXML
subprograms.

To use this book, you need an understanding of computer concepts, knowledge of
computer programming, and knowledge of mathematics in the areas of DXML
computations.

Chapter Descriptions
This manual includes the following chapters and appendices:

• Chapter 1 provides an introduction to DXML.

• Chapter 2 explains how to prepare and store program data.

• Chapter 3 explains how to code an application program.

• Chapter 4 describes the parallel library.

• Chapter 5 explains how to compile and link an application program.

• Chapter 6 describes how to use the Level 1 BLAS subprograms and
extensions and is followed by the descriptions of the BLAS Level 1 and
Level 1 Extensions subprograms.

• Chapter 7 describes how to use the Sparse Level 1 BLAS subprograms, and is
followed by the descriptions of the Sparse BLAS Level 1 supbprograms.

• Chapter 8 describes how to use the Level 2 BLAS subprograms, and is
followed by the descriptions of the BLAS Level 2 subprograms.

• Chapter 9 describes how to use the Level 3 BLAS subprograms, and is
followed by the descriptions of the BLAS Level 2 subprograms.

• Chapter 10 provides an overview of the LAPACK library of subroutines.

• Chapter 11 describes how to use the signal processing subprograms, and is
followed by the descriptions of the signal processing subprograms.

• Chapter 12 describes how to use the Iterative Solvers for Sparse Linear
Systems, and is followed by the descriptions of the sparse iterative solver
subprograms.
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• Chapter 13 describes how to use Direct Solvers for Sparse Linear Systems,
and is followed by the descriptions of the sparse iterative solver subprograms.

• Chapter 14 describes how to use the VLIB subprograms, and is followed by
the descriptions of the VLIB subprograms.

• Chapter 15 describes how to use the random number generator subprograms,
and is followed by the descriptions of the random number generator
subprograms.

• Chapter 16 describes how to use the sort subprograms, and is followed by the
descriptions of the sort subprograms.

• Appendix A, Bibliography, provides resource information about the
mathematical operations covered by DXML.

Associated Documentation
In addition to this manual, the following DXML documentation is available:

• Installation information - located in the DIGITAL Fortran Installation Guide
for DIGITAL UNIX Systems

• Online release notes - ascii text file

• Online version of this manual - .PDF file

• Online HELP - UNIX manpages for DXML

Additionally, the following related documentation is recommended:

• DIGITAL Fortran 90 User Manual for DIGITAL UNIX Systems

• DIGITAL Fortran Language Reference Manual

• LAPACK Users’ Guide (available from SIAM)

About LAPACK
To make use of the LAPACK library, DIGITAL recommends the purchase of the
major documentation of LAPACK, in book form, published by the Society for
Industrial and Applied Math (SIAM) in 1995:

LAPACK Users’ Guide, 2nd Edition, by E. Anderson et al,
SIAM
3600 University City Science Center
Philadelphia PA 19104-2688
ISBN: 0-89871-345-5
Tel: 1-800-447-SIAM
email: service@siam.org

This documentation is also available on the internet in a format viewable by a
web browser. To view this book on the internet, use the following URL:

http://www.netlib.org/lapack/lug/lapack_lug.html

About DXML Manpages
DXML contains the following hierarchy of manpages:

• A top-level manpage (dxml) consisting of a product overview and a list of the
manpages that describe DXML subcomponents

• A manpage for each DXML subcomponent that describes its functionality and
lists the manpages that describe its subprograms
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• A manpage for each subprogram that provides details of its use and the
operations it implements

Refer to the section of this Preface titled "Using Manpages" if you need
information about accessing or using these manpages.

Conventions Used in this Book
In this book, OpenVMS refers to the DIGITAL OpenVMS operating system, and
UNIX refers to the DIGITAL UNIX operating system. References to Windows
NT includes Windows NT for Intel and Windows NT for Alpha, unless otherwise
stated.

This book also uses the documentation conventions summarized in the following
tables.

Table 1 General Documentation Conventions

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you
must first press and release the key labeled PF1 or GOLD
and then press and release another key or a pointing device
button.

GOLD key sequences can also have a slash ( / ), dash (–), or
underscore ( _ ) as a delimiter in EVE commands.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is
not enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

( ) In command format descriptions, parentheses indicate that,
if you choose more than one option, you must enclose the
choices in parentheses.

[ ] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional in the syntax of a substring
specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

(continued on next page)
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Table 1 (Cont.) General Documentation Conventions

Convention Meaning

bold Bold type is used to emphasize a word or phrase or
to indicate math variables. In text, it represents the
introduction of a new term or the name of an argument,
an attribute, or a reason. In examples, it shows user input.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where device-name contains up to five
alphanumeric characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a
routine, the name of a file, or the abbreviation for a system
privilege.

Monospace type Monospace type indicates code examples and interactive
screen displays.
In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

MONOSPACE TYPE Monospaced uppercase characters are used for lines of code,
commands, and command qualifiers.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

* An asterisk means that no value is stored at that location
in the array.

Table 2 Documentation Conventions for Math

Item Example Description Usage

Vector x Lowercase italic The vector x has six
elements.

Vector element x2 Lowercase italic with one
subscript indicating position

The second element of
the vector x is x2.

Matrix A Uppercase italic The matrix A has three
rows and four columns.

Matrix element a23 Lowercase italic with two
subscripts indicating position

Element a23 is in the
second row and third
column of A.

Scalar quantity
specifying length or
count

m by n Lowercase italic A is an m by n
band matrix with kl
subdiagonals and ku
superdiagonals.

xx



Table 3 Documentation Conventions for Programming

Item Example Description Usage

Array A or X Uppercase The matrix A is stored
in the array A, and the
vector x is stored in the
array X.

Array element A(1,2) or X(3) Uppercase with numbers in
parentheses indicating position

A(1,2) is the element in
the first row and second
column of the array A.
X(3) is the third element
in the array X.

Arguments mentioned in
text

n or A Bold The data length is
specified by the n
argument.

Table 4 Symbols and Expressions Used

Symbol
or Expression Description

�, �, a Greek and English letters denoting scalar values

jincxj Absolute value of incx

A  B Matrix A is replaced by matrix B

B
T
y
T Transpose of the matrix B; transpose of the vector y

B
�1 Inverse of the matrix B

B
�T Inverse of the transpose of matrix B

B
m Product of matrix B, m times

B y Complex conjugate of the matrix B; complex conjugate of the vector y

B
H
y
H Complex conjugate transpose of the matrix B; complex conjugate transpose of the

vector y

bij yi Complex conjugate of the matrix element bij ; complex conjugate of the vector element
yi

nP
i=1

xi
Sum of the elements x1 to xn

min fxjg Minimum element in the vector x

max fxjg Maximum element in the vector x

Using the Reference Sections
The following information may be helpful when using the reference sections
contained in this book.

Each component of the DXML library is described in its own reference section.
Each reference section consists of an introductory discussion followed by reference
pages that describe the functionality, calling sequences, and parameters of each
routine. Many of the routines come in four variations, indicated by the prefix in
its name:

S single-precision

D double-precision
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C single-complex

Z double-complex

The description of each routine combines the purpose and attributes of all four
variations. When the discussion applies to all four versions, a leading underscore
character is used for a prefix.

In this book, references to real*4, real*8, complex*8, and complex*16 refer to
single-precision, double-precision, single-complex, and double-complex, as follows:

• real*4 = single-precision

• real*8 = double-precision

• complex*8 = single-complex

• complex*16 = double-complex

The following conventions indicate any differences among the four variations:

• Data types
If a parameter’s data type is the same for all variations of the routine, the
data type is listed once:

integer*4

If a parameter has a different data type when used with each of the
variations, the parameter’s data type is documented in the following way:

real*4 | real*8 | complex*8 | complex*16

This indicates that the parameter must be single-precision when calling
routines with the prefix S, double-precision when calling routines with
the prefix D, single-complex when calling routines with the prefix C, and
double-complex when calling routines with the prefix Z.

• Parameters

For some routines, a variation requires additional parameters. This is
indicated in the calling sequence in the following way:

{S,D}xxxx(..., ..., ...)

{C,Z}xxxx(..., rwork, ...)

• Ordering of routines

In general, the BLAS routines are sorted alphabetically, However, some
routines that have the same logical function are documented together even
though they have different names. This occurs when the real version of the
routine deals with a symmetric matrix (and so has SY in its name) and the
complex version deals with a Hermitian matrix (HE). The signal processing,
iterative solver, and direct solver routines are grouped according to the type
of mathematical task.

Using Manpages
Online reference information for DXML is available in the form of manpages.
Symbolic links to the manpages are installed in the /usr/share/man/man3
directory at installation time.
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Use the man command, with the manpage name, to display a DXML manpage.
For example, to display the product overview - which gives a brief summary of the
contents of DXML, a list of subcomponents, and pointers to related information -
enter the following command:

man dxml

To display the manpage that describes a subcomponent, such as BLAS 3, and its
list of associated subprograms, use the name of the subcomponent, as follows:

man blas3

To display the manpage that provides a description of a subprogram, such as
SAXPY, use the name of the subprogram, as follows:

man saxpy

Note About LAPACK Manpages
To display the manpage that gives an overview of LAPACK, and lists LAPACK
routines and the operations they perform, use the following command:

man lapack

LAPACK routines have a separate manpage for each data type. When you use
the man command for an LAPACK routine, the routine name should have the
correct data type. For example, to display the manpage for the DGETRF routine,
use the command:

man dgetrf

To display the CGETRF routine, use the command:

man cgetrf

Sending DIGITAL Your Comments
DIGITAL welcomes your comments on this product and on its documentation.
You can send comments to us in the following ways:

• Internet electronic mail: DXML@DIGITAL.COM

• FAX: 603-884-0120, Attention: DXML Team, ZK02-3/Q18

• A letter sent to the following address:

DIGITAL Equipment Corporation
High Performance Computing Group (DXML), ZK02-3/Q18
110 Spit Brook Road
Nashua, N.H. 03062-2698
USA

If you have suggestions for improving particular sections, or find errors, please
indicate the title, order number, and section number.

Getting Help from DIGITAL
If you have a customer support contract and have comments or questions
about DXML software, you contact DIGITAL’s Customer Support Center (CSC),
preferably using electronic means such as DSNlink. In the United States,
customers can call the CSC at 1-800-354-9000.
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1
Introduction to DXML

Digital Extended Math Library (DXML) is a collection of high-performance,
computationally-intensive mathematical subprograms designed for use in many
different types of scientific and engineering applications. DXML subprograms are
callable from any programming language.

1.1 Overview
DXML’s subprograms cover the areas of Basic Linear Algebra, Linear System and
Eigenproblem Solvers, Sparse Linear System Solvers, Sorting, Random Number
Generation, and Signal Processing.

Where appropriate, each subprogram has a version to support each combination
of real or complex arithmetic and single or double precision. The supported
floating point format is IEEE.

• Basic Linear Algebra Subprograms - The Basic Linear Algebra
Subprograms (BLAS) library includes the industry-standard Basic Linear
Algebra Subprograms for Level 1 (vector-vector (BLAS1)), Level 2 (matrix-
vector (BLAS2)), and Level 3 (matrix-matrix (BLAS3)). Also included are
subprograms for BLAS Level 1 Extensions, Sparse BLAS Level 1, and Array
Math Functions (VLIB).

• Signal Processing Subprograms - The Signal Processing library provides
a basic set of signal processing functions. Included are one-, two-, and
three-dimensional Fast Fourier Transforms (FFT), group FFTs, Cosine/Sine
Transforms (FCT/FST), Convolution, Correlation, and Digital Filters.

• Sparse Linear System Subprograms - The Sparse Linear System library
provides both direct and iterative sparse linear system solvers. The direct
solver package supports both symmetric and nonsymmetric sparse matrices
stored using the skyline storage scheme. The iterative solver package
contains a basic set of storage schemes, preconditioners, and iterative solvers.
The design of this package is modular and matrix-free, allowing future
expansion and easy modification by users.

• LAPACK subprograms - The Linear System and Eigenproblem Solver
library provides the complete LAPACK package developed by a consortium
of university and government laboratories. LAPACK is an industry-
standard subprogram package offering an extensive set of linear system
and eigenproblem solvers. LAPACK uses blocked algorithms that are
better suited to most modern architectures, particularly ones with memory
hierarchies. LAPACK will supersede LINPACK and EISPACK for most users.
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1.2 Parallel Library Support for Symmetric Multiprocessing
DXML supports symmetric multiprocessing (SMP) for improved performance on
platforms that support SMP. Key BLAS Level 2 and 3 routines, the LAPACK
GETRF and POTRF routines, the sparse iterative solvers, the skyline solvers,
and the FFT routines have been modified to execute in parallel if run on SMP
hardware. These parallel routines along with the other serial routines are
supplied in an alternative library.

The user may choose to link with either the parallel (" -ldxmlp ") library, or the
serial (" -ldxml ") library, depending on whether SMP support is required, since
each library contains the complete set of routines. The parallel DXML library
achieves its parallelization using OpenMP.

1.3 Cray SciLib Support (SCIPORT)
SCIPORT is Digital Equipment Corporation’s implementation of the Cray
Reasearch scientific numerical library, SciLib. SCIPORT provides 64-bit single-
precision and 64-bit integer interfaces to underlying DXML routines for Cray
users porting programs to Alpha systems running DIGITAL UNIX. SCIPORT also
provides an equivalent version of almost all Cray Math Library and CF77 (Cray
Fortran 77) Math intrinsic routines.

In order to be completely source code compatible with SciLib, the SCIPORT
library calling sequence supports 64-bit integers passed by reference. However,
internally, SCIPORT used 32 bit integers. Consequently, some run-time uses of
SciLib are not supported by SCIPORT.

SCIPORT provides the following:

• 64-bit versions of all Cray SciLib single-precision BLAS Level 1, Level 2, and
Level 3 routines

• All Cray SciLib LAPACK routines

• All Cray SciLib Special Linear System Solver routines

• All Cray SciLib Signal Processing routines

• All Cray SciLib Sorting and Searching routines

These routines are completely interchangeable with their Cray SciLib
counterparts, up to the runtime limit on integer size - and with the exception of
the ORDERS routine, require no program changes to function correctly. Due to
endian differences of machine architecture, special considerations must be given
when the ORDERS routine is used to sort multi-byte character strings.

1.4 Calling DXML from Programming Languages
DXML subprograms are callable from most programming languages. However,
DXML subprograms follow Fortran conventions and assume a Fortran standard
for the passing of arguments and for the storing of data. Unless specifically
noted, all non-character arguments are passed by reference. Data in arrays is
stored column by column.

If you are programming in a language other than Fortran, consult the specific
language’s user guide and reference manual for information about how that
language stores and passes data. You may be required to set up your data
differently from the way you normally would when using that language.
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1.5 How DXML Achieves High Performance
DXML relies on the following design techniques to achieve high performance:

• Computational constructs maximize the use of available instructions and
promote pipelined use of functional units.

• Where appropriate, selected routines are available in parallel and serial, to
offer additional performance on multiprocessor (SMP) systems.

• The hierarchical memory system is efficiently managed by enhancing the data
locality of reference:

Data in registers is often reused to minimize load and store operations.

The cache is managed efficiently to maximize the locality of reference
and data reuse. For example, the algorithms are structured to operate
on sub-blocks of arrays that are sized to remain in the cache until all
operations involving the data in the sub-block are complete.

The algorithms minimize Translation Buffer misses and page faults.

• Unity increment (or stride) is used wherever possible.

1.6 DXML’s Accuracy
To obtain the highest performance from processors, the operations in DXML
subprograms have been reordered to take advantage of processor-level
parallelism.

As a result of this reordering, some subprograms may have an arithmetic
evaluation order different from the conventional evaluation order. This difference
in the order of floating point operations introduces round-off errors that imply
the subprograms can return results that are not bit-for-bit identical to the
results obtained when the computation is in the conventional order. However, for
well-conditioned problems, these round-off errors should be insignificant.

Significant round-off errors in application code that is otherwise correct indicates
that the problem is most likely not correctly conditioned. The errors could be
the result of inappropriate scaling during the mathematical formulation of
the problem or an unstable solution algorithm. Re-examine the mathematical
analysis of the problem and the stability characteristics of the solution algorithm.
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2
Preparing and Storing Program Data

This chapter discusses how to prepare and store program data. The data your
program uses can be classified as one of two kinds: scalar or array data. The
following topics are covered in this chapter:

• Scalar data and array data (Section 2.1, Section 2.2, and Section 2.3)

• Ways that scalar data can be stored in arrays (Section 2.4)

• Storing program data (Section 2.5)

• Fortran arrays (Section 2.6)

2.1 Scalar Data
A single data item, having one value, is known as a scalar. A scalar can be a
single piece of data, or it can be an element in an array. A scalar can be passed
to a subprogram as input or returned as output to your application program.

Scalar data can be of different types such as character, integer, single-precision
real, double-precision real, single-precision complex, and double-precision
complex.

2.1.1 Fortran Data Types in DXML
The Fortran data types that can be passed to DXML subprograms are shown in
Table 2–1.

Table 2–1 Fortran Data Types

Data Type
Fortran
Equivalent Definition

Character CHARACTER*1 A single character such as ‘‘n’’, ‘‘t’’, or ‘‘C’’.

Character string CHARACTER*(*) A sequence of one or more characters.

Logical LOGICAL*4 A logical value: TRUE or FALSE.

Integer INTEGER*4 A number such as +8 or �136.

Single-precision real REAL*4 A single-precision floating-point number.

Double-precision real REAL*8 A double-precision floating-point number.

Single-precision complex COMPLEX*8 Two floating-point numbers that together
represent a complex number. Each number
is REAL*4.

Double-precision
complex

COMPLEX*16 Two floating-point numbers that together
represent a complex number. Each number
is REAL*8.
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2.2 Data Representation in Fortran
When data is passed to a DXML subprogram, it must conform to the Fortran
standard. The following sections describe the Fortran data types used in DXML
subprograms and illustrate how data with these types is stored in memory.

2.2.1 CHARACTER*1 and CHARACTER*(*) Representation
A character string is a contiguous sequence of bytes in memory. A character
string is specified by a descriptor containing two attributes: the address of the
first byte of the string, and the length of the string in bytes.

2.2.2 LOGICAL Representation
Logical values are stored in four contiguous bytes, starting on an arbitrary byte
boundary. The low-order bit (bit 0) determines the value. If bit 0 is set, the value
is TRUE. If bit 0 is clear, the value is FALSE.

2.2.3 INTEGER*4 Representation
INTEGER*4 values are stored in two’s complement representation and lie in the
range �2147483648 to 2147483647. Each value is stored in four contiguous bytes,
aligned on an arbitrary byte boundary.

2.2.4 REAL Floating-Point Representations
The Digital UNIX architecture defines two real floating-point data types that
conform to IEEE standard data formats. DXML supports the following two
formats:

• S_floating (REAL*4)

The value of S_floating data is in the approximate normalized range
1:18 � 10�38 to 3:4 � 1038. The precision is approximately one part in 223

or seven decimal digits.

• T_floating (REAL*8)

The value of T_floating data is in the approximate range 2:23 � 10�308 to
1:8�10308. The precision is approximately one part in 252 or 15 decimal digits.

2.2.5 COMPLEX Floating-Point Representations
The Digital UNIX architecture defines two complex floating-point data types.
DXML supports the following two formats:

• U_floating complex (COMPLEX*8)

• V_floating double complex (COMPLEX*16)

2.3 Array Data
Array data can be thought of as many pieces of data grouped together in one
unit called an array. Each piece of data is called an element of the array. Each
element is a scalar and all elements are of the same data type.

An array can have one or more dimensions. A column or row of numbers is a
one-dimensional array. A one-dimensional array is usually represented as a
column or row of elements in parentheses. For example:

(3:1; 2:2; 1:3; 2:2; 3:1)

To locate a value in this array, you specify its position within the parentheses.
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A table with rows and columns of figures is a two-dimensional array. A two-
dimensional array is usually represented as rows and columns enclosed in square
brackets: �

3:1 4:3 9:0
1:1 4:0 11:7

�

To locate a value in this array, you specify its position within the brackets by
specifying its row number and then its column number.

From the user’s perspective, an array is a group of contiguous storage locations
associated with a single symbolic name, such as A, the array name. The
individual storage locations (the array elements) are referred to by a number or a
series of numbers in parentheses after the array name. A(1) is the first element
of a one-dimensional array A. A(3,2) is the element in the third row and second
column of a two-dimensional array A.

An array can contain data structures such as vectors and matrices. The way
vector or matrix elements are separated in array storage is defined by stride and
leading dimension arguments passed to DXML subprograms. See Section 2.6 for
information on array storage techniques.

An array can be passed to a DXML subprogram as input, it can be returned as
output to your application program, or it can be used by the subprogram as both
input and output. In the latter case, some input data would be overwritten and
therefore lost.

2.4 Requirements for Array Storage
Not all programming languages use the same storage techniques to store arrays.
Some programming languages, such as Fortran, store arrays in memory in
column-major order, storing the first column, then the second column, and so on.
Other languages, such as C, store arrays in row-major order, storing the first row,
then the second row, and so on.

DXML assumes that array elements are stored in column-major order when
processing data. Use Fortran conventions as described in Section 2.6 for arrays
passed to a DXML subprogram.

If you are calling DXML subprograms from languages other than Fortran, you
must set up your data so that Fortran conventions for array storage can be
applied. For information about calling subprograms from other languages, see
Chapter 3.

2.5 Storing Program Data
DXML subprograms perform operations on two particular kinds of data
structures: vectors and matrices. This section defines and describes vectors
and matrices and discusses the various ways of storing vectors and matrices in
arrays.
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2.5.1 Vectors
A vector is a one-dimensional ordered collection of numbers, either real or
complex. A real vector contains real numbers, and a complex vector contains
complex numbers.

A vector can be represented symbolically as a column of numbers or as a row of
numbers. For a column of numbers, use the following vector notation for a vector
x with n elements:

x =

2
66664
x1
x2
x2
...
xn

3
77775

For a row of numbers, use the following vector notation for a vector y with
n elements:

y = [ y1 y2 y3 . . . yn ]

2.5.2 Transpose and Conjugate Transpose of a Vector
The transpose of a vector changes a column vector to a row vector or a row vector
to a column vector. Use the following notation for a vector x and its transpose xT :

x =

2
66664
x1
x2
x2
...
xn

3
77775 xT = [ x1 x2 x3 . . . xn ]

A complex number c is defined as c = a + bi, where a and b are real and i =
p�1.

The complex conjugate c is obtained by replacing i by �i:

c = a� bi

If a vector x has elements that are complex numbers, the conjugate transpose
of the vector x, denoted by xH , is the vector that changes each element of
xj = aj + bj i to its complex conjugate xj = aj � bj i and then transposes it:

xH = [ x1 x2 x3 . . . xn ]

2.5.3 Storing a Vector in an Array
DXML provides various storage schemes to store vectors in arrays. You can find
information about vector storage schemes in the following chapters:

• Defining and storing a vector in an array (See Section 6.2.1 and Section 6.2.2).

• Storing a sparse vector (See Section 7.2.1 and Section 7.2.2).

• Storing vectors for signal processing subprograms (See Section 11.1.2).
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2.5.4 Matrices
A matrix is a two-dimensional ordered collection of numbers, either real
or complex. A matrix A with m rows and n columns, an m by n matrix, is
represented in the following way:

A=

2
64 a11 . . . a1n

...
...

...
am1 . . . amn

3
75

The elements of the matrix are represented as aij where i = 1; :::;m and
j = 1; :::; n. A square matrix with n rows and n columns is called a matrix
of order n.

2.5.5 Transpose and Conjugate Transpose of a Matrix
The transpose of a matrix A, denoted by AT , is formed by taking the ith row of A
and making it the ith column of AT . The columns of A become the rows of AT . If
A is an m by n matrix, AT is an n by m matrix. Use the following notation for a
matrix A and its transpose:

A =

2
64 a11 . . . a1n

...
...

...
am1 . . . amn

3
75

AT =

2
64 a11 . . . am1

...
...

...
a1n . . . amn

3
75

The effect of transposing a matrix is to flip the matrix across its main diagonal.
The element in row i, column j of AT comes from row j , column i of A:

AT
ij = Aj i

Taking the conjugate transpose of a matrix A that contains complex numbers
is an operation on the matrix that changes each element of the matrix to its
complex conjugate and then transposes the matrix:

AH =

2
64 a11 . . . an1

...
...

...
a1n . . . amn

3
75

The effect of finding the complex conjugate of a matrix is to get the complex
conjugate of each element of the matrix and then flip the matrix across its main
diagonal. The element in row i, column j of AH is the complex conjugate of the
element in row j , column i of A:

AH
ij = Aji
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2.5.6 Storing a Matrix in an Array
DXML provides various storage schemes to store matrices in arrays. You can find
information about matrix storage schemes in the following chapters:

• Defining and storing a matrix in an array (see Section 8.2.1).

• Symmetric and Hermitian matrices (see Section 8.2.2 and Section 8.2.3).

• Triangular matrix (see Section 8.2.4 and Section 8.2.5).

• General band matrices (see Section 8.2.6 and Section 8.2.7).

• Real symmetric band matrices and complex hermitian band matrices (see
Section 8.2.8 and Section 8.2.9).

• Upper and lower triangular band matrices (see Section 8.2.10 and
Section 8.2.11).

• Sparse matrices for iterative solvers (see Section 12.3 and Section 12.3.1).

• Sparse matrices stored using skyline storage scheme (see Section 13.4).

2.6 Fortran Arrays
A Fortran array can have from one to seven dimensions. An array is specified by
the name of the array, the number of dimensions in the array, and the number of
elements in each dimension. DXML operates on one- to three-dimensional arrays.

You must state the size of each array explicitly in your Fortran program. Use a
DIMENSION statement, or preferably, a specific data type statement (such as
REAL*4 or COMPLEX*8) for each array. Fortran arrays are always stored in
memory as a linear sequence of values.

2.6.1 One-Dimensional Fortran Array Storage
A one-dimensional Fortran array is stored with its first element in the first
storage location, the second element in the second storage location, and so on
until the last element is in the last storage location.

For example, consider the one-dimensional array A with 4 elements shown in
(2–1):

A = (A(1);A(2);A(3);A(4)) (2–1)

The array A has its elements stored as shown in Table 2–2.

Table 2–2 One-Dimensional Fortran Array Storage

Storage Location Array Element

1 A(1)
2 A(2)
3 A(3)
4 A(4)
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2.6.2 Two-Dimensional Fortran Array Storage
The elements of a two-dimensional array are stored column by column, so that
the left subscripts vary most rapidly and the right subscripts vary least rapidly.
The elements of the first column are stored, then the elements of suceeding
columns are stored, until the elements in the last column are stored. This mode
of storage is called column-major order.

For example, consider the two-dimensional array A with 12 elements shown in
Table 2–3:

A =

2
64
A(1; 1) A(1; 2) A(1; 3)
A(2; 1) A(2; 2) A(2; 3)
A(3; 1) A(3; 2) A(3; 3)
A(4; 1) A(4; 2) A(4; 3)

3
75

The array A has its elements stored as shown in Table 2–3.

Table 2–3 Two-Dimensional Fortran Array Storage

Storage Location Array Element

1 A(1,1) (column 1 starts)
2 A(2,1)
3 A(3,1)
4 A(4,1)
5 A(1,2) (column 2 starts)
6 A(2,2)
7 A(3,2)
8 A(4,2)
9 A(1,3) (column 3 starts)

10 A(2,3)
11 A(3,3)
12 A(4,3)

2.6.3 Array Elements
All the elements of an array have the same data type: real or complex, single-
or double-precision. The size of the storage locations for the elements depends
on the data type of the array. Single-precision real (REAL*4, S_floating) data
requires 4 bytes of storage; double-precision real (REAL*8, T_floating) data
requires 8 bytes of storage.

Because a complex number is an ordered pair of two real numbers, (a; b) or
a + ib, where i =

p�1, storing a complex number requires two storage locations,
one location for each part of the complex number. Single-precision complex
(COMPLEX*8, S_floating complex) data requires 8 bytes of storage; double-
precision complex (COMPLEX*16, T_floating complex) data requires 16 bytes of
storage.
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3
Coding an Application Program

As you code your application program, you need to remember certain information.
This chapter provides information about the following topics:

• Guidelines for choosing the appropriate subprogram version (Section 3.1)

• Subprogram calling sequences and argument descriptions (Section 3.2)

• Calling subroutines and functions in Fortran (Section 3.3)

• Calling subroutines in other languages (Section 3.4)

• Error handling (Section 3.5)

3.1 Selecting the Appropriate Subprogram Version
DXML contains several versions of most subprograms. These versions are for
operations performed in either real or complex arithmetic and either single-
precision or double-precision arithmetic. You must use the DXML subprogram
that operates on the type of data that you are using.

The naming convention for the subprogram identifies the type of data it works
with. The first or second letter shows the type of data on which the subprogram
operates. The letters shown (S, D, C, and Z) represent the following:

S Single-precision real data
D Double-precision real data
C Single-precision complex data
Z Double-precision complex data

See Chapter 5 for information on the compile and link procedure.

3.1.1 Subprogram Data Structure and Storage Method
DXML subprograms operate on vectors and matrices. For the subprograms that
operate on matrices, different kinds of matrices use different storage schemes.
When you use a DXML subprogram, consider the type of matrix used in your
application and the data structure used to store it.

The storage methods described in Chapter 2 apply to Fortran and other languages
that store arrays in column-major order. See Section 3.4 for techniques to use for
languages that store arrays in row-major order.

3.1.2 Improving Performance
You have several options for improving the performance of your application
subprogram:

• Use higher level BLAS subprograms where applicable. For example, use
a Level 3 BLAS subprogram rather than a sequence of calls to Level 2
subprograms.
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• Use subprograms that perform more than one computation rather than
subprograms that perform a single computation.

• Use an increment or stride of 1. Performance is better if the elements of a
vector are stored close to each other.

• In a few cases, the difference between two subprograms is that one performs
scaling. Since performance is better when no scaling is done, use the
subprogram without scaling whenever possible.

3.2 Calling Sequences
Each of the DXML subprograms has a specific calling sequence. The calling
sequences for each subprogram are described in this manual.

These descriptions specify the correct syntax for the argument list; whether
an argument is an input argument, an output argument, or both; required
numerical values for arguments; and specific actions that might be taken by the
subprogram.

Each subprogram is described using a structured format:

Name
Overview
Format
Function Value (if applicable)
Arguments
Description
Example

The Arguments section provides detailed information about each subprogram
argument, such as the argument name, the Fortran data type, the information
the argument passes to or returns from the subprogram, and the acceptable
values of the argument. All arguments in the calling sequences are required
arguments.

The terms On entry and On exit are used in each argument description to show
whether the argument is an input argument, an output argument, or both:

• An input argument has a value on entry and is unchanged on exit.
An input argument passes information from the application program to the
subprogram.

• An output argument has no value on entry and is overwritten on exit.
An output argument passes information from the subprogram back to the
application program.

• An argument that is used for both input and output has a value on entry
that is overwritten on exit by the output value. An argument used for both
input and output passes information both to the subprogram and back to the
application program. If you want to keep the input data, save it before calling
the subprogram.

To avoid errors and the possible termination of a program’s execution, be sure
input data is of the correct type. Do not mix single-precision data and double-
precision data. Also, character values must be one of the allowed characters and
numeric values have to be within the specified range.
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3.2.1 Passing of Arguments
In Fortran, a character argument can be longer than its corresponding dummy
argument. For example, some BLAS subroutines have the arguments with the
data type CHARACTER*1. One such argument is the trans argument, which
is used to select the form of the input matrix. The value ’ T’ can be passed as
’ TRANSPOSE’ .

Some signal processing subroutines have arguments with the data type
CHARACTER*(*). For example, the value ’ F’ for the argument direction
can be passed as ’ FORWARD’ .

3.2.2 Implicit and Explicit Arguments
Arguments can be coded either implicitly or explicitly. For example, consider the
Level 3 subprogram SSYMM. The following programs are equivalent.

REAL*4 A(20,20), B(30,40), C(30,50), ALPHA, BETA
SIDE = ’L’
UPLO = ’U’
M = 10
N = 20
ALPHA = 2.0
BETA = 3.0
LDA = 20
LDB = 30
LDC = 30
CALL SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

REAL*4 A(20,20), B(30,40), C(30,50)
CALL SSYMM(’L’,’U’,10,20,2.0,A,20,B,30,3.0,C,30)

3.2.3 Expanding Argument Lists
DXML provides the ability to expand the argument lists of each DXML
subprogram from within an editor. This capability is convenient when creating or
modifying code that frequently calls DXML subprograms and is available for the
EMACS editor.

EMACS Editor
Use the following to expand the parameter list of a subroutine:

1. At the EMACS command line, load the file /usr/share/dxml.ml .

2. Enter ABBREV mode.

3. Enter the subroutine name and then press the SPACE bar.

3.3 Calling Subroutines and Functions in Fortran
A few DXML subprograms return a scalar. These subprograms are functions, and
they are called as functions by coding a function reference. First, declare the data
type of the returned value and the subprogram name, and then code the function
reference, as shown in the following generic example:

INTEGER*4 function_value, subprogram_name
function_value = subprogram_name (argument_1,argument_2, . . . ,argument_n)
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For example, the Level 1 BLAS subprogram ISAMAX returns the index of the
element of vector x having the largest absolute value:

.

.

.
INTEGER*4 IAMAX, ISAMAX

.

.

.
IAMAX=ISAMAX(N,X,INCX)

For the signal processing routines, the declaration of function type is done by
including either "dxmldef.h" or "DXMLDEF.FOR" in your code. All arguments of
function subprograms are input arguments, which are unchanged on exit. The
value is returned to the function value.

Most subprograms return a vector or a matrix. These subprograms are
subroutines and they are called as subroutines with a CALL statement.

CALL subroutine_name (argument_1,argument_2, . . . ,argument_n)

For example, the call statement for the subroutine SSET looks like the following:

CALL SSET(N,A,X,INCX)

Each subroutine has an output argument that is overwritten on exit and contains
the output information.

3.3.1 Fortran Program Example
The following is an example of a Fortran program that makes a call to saxpy:

integer n,incx,incy
real x(5),y(5),alpha

DATA x /2.0,4.0,6.0,8.0,10.0/
DATA y /5*1.0/
incx = 1
incy = 1
alpha = 2.0
n = 5

call saxpy (n,alpha,x,incx,y,incy)

write (6,*) y

stop
end

3.4 Using DXML from Non-Fortran Programming Languages
If your application involves only one-dimensional arrays (for example, one-
dimensional FFTs), call DXML routines as described in the calling standard.
However, two-dimensional (and higher) arrays are not covered by most calling
standards. High-level languages have different ways of storing the elements of a
two-dimensional matrix in a two-dimensional array.

DXML requires that arrays be stored in column-major order the way Fortran
does. If you are writing applications in languages such as ADA or C, and you
want to call DXML routines, you must consider how to ensure that array data is
passed and processed correctly to obtain the highest performance.
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The most direct and least error-prone method of calling DXML routines from
another language, is to write a matrix transpose routine in that language, and
to use transposed (column-stored) matrices in calls to DXML routines. The
application program can subsequently transpose the results of calls to DXML
when appropriate, to return to the row-major format of the calling language.

In some cases, using matrix identities is a shortcut, at a small cost in program
complexity, as shown in the following two cases of the same operation (to compute
the row-stored product of two matrices):

A and B are n by n matrices, stored in row-major order. To compute their
product, C = AB:

1. Transpose A. Store it in the array AT.

2. Transpose B. Store it in the array BT.

3. Invoke the matrix-multiply routine to compute D = AB, column-stored.

CALL SGEMM(’N’,’N’,N,N,N,1.0,AT,N,BT,N,0.0,D,N)

4. Transpose D to get C, the row-stored version of the result.

The shortcut uses the matrix identity, as in (3–1):

(BTAT )T = AB (3–1)

From a Fortran point of view, row-major storage of the matrices A and B is
simply the matrices AT and BT . Therefore, the same row-major product can be
computed using the following procedure:

1. Invoke the matrix-multiply routine.

SGEMM(’N’,’N’,N,N,N,1.0,B,N,A,N,0.0,C,N)

This routine computes BTAT , column-stored, that is C = (BTAT )T = AB, the
row-stored result.

A third way to achieve the same product is somewhat slower because of the way
memory is accessed:

1. Invoke the matrix-multiply routine to compute (AT )T (BT )T , column-stored,
that is D = CT .

SGEMM(’T’,’T’,N,N,N,1.0,A,N,B,N,0.0,D,N)

2. Transpose D to get C, the row-stored version of the result.

3.4.1 Calling DXML from C Programs
In addition to the differences in storage of multi-dimensional arrays between
Fortran and C, the following changes may also be required for a C program that
calls DXML subroutines.

1. In Fortran, a two-dimensional array declared as:

DOUBLE PRECISION A(LDA,N)

is a contiguous piece of LDA� N double precision words in memory stored in a
column major order. However, a similar declaration in C:

double A[LDA][N]);
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is LDA pointers to rows of length N. As these pointers can be anywhere, there
is no guarantee that the rows of the array are contiguous. To interface a
C program with a DXML routine that expects the memory locations to be
contiguous, the array A should be declared as

double A[LDA*N];

or allocated as contiguous memory locations using malloc .

2. On Digital UNIX, you must append an underscore at the end of each
subroutine or function subprogram name.

3.4.2 C Program Example
The following example illustrates the calculation of a matrix-vector product using
the DXML routine DGEMV. The matrix is stored using the row-major storage of
C. The column-major storage of the DXML Fortran routine is implicitly taken
into account by calculating AT � x, instead of A � x.

#include <stdio.h>
#include <stdlib.h>

#define dgemv dgemv_
#define max_size 10

extern void dgemv(char *, int *, int*, double *,
double [], int *, double[], int *, double *,
double[], int *);

int main()
{

double *a, *b, *x;
double alpha, beta;

int length, lda, incx, i, j;

length = 3;
lda = max_size;
incx = 1;

alpha = 1.0;
beta = 0.0;

a = (double *)malloc(max_size*max_size*sizeof(double));
b = (double *)malloc(max_size*sizeof(double));
x = (double *)malloc(max_size*sizeof(double));

for (i=0; i<length; i++)
{

for (j=0; j<length; j++)
a[max_size*i+j] = (double)(2*i+j);

x[i] = 1.0;
}

printf(" matrix:\n");
for (i=0; i<length; i++)
{

for (j=0; j<length; j++)
printf(" %6.2f ", a[i*max_size+j]);

printf("\n");
}

printf("\n vector:\n");
for (j=0; j<length; j++)

printf(" %6.2f \n", x[j]);

dgemv("T", &length, &length, &alpha, a, &lda, x, &incx,
&beta, b, &incx);
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printf("\n matrix times vector: \n");
for (i = 0; i < length; i++)

printf (" %.2f\n",b[i]);

free (a);
free (b);
free (x);

} /* end of main() */

Additional examples illustrating the use of DXML routines from a C program can
be found on-line at /usr/examples/dxml .

3.5 Error Handling
Some errors are common to all portions of the DXML library. Other errors are
unique to a particular library within DXML. This section describes general
information about how errors are handled. See the appropriate chapters for more
details about error handling for specific subprograms.

3.5.1 Internal Exceptions
Under certain extreme conditions, such as passing numbers on the verge of
underflow or overflow, you can receive an internal exception error message. If
this happens, you should check arguments for valid range.

When underflow occurs, the number is replaced by a zero, and execution
continues. No error message is provided. When overflow occurs, you receive
a message directed to the devices or files defined as stdout and stderr, and
execution terminates. Check the subprogram arguments for valid range.

Internal exceptions also occur if you have a shorter array than that specified by a
data length argument. In this case, you receive an error message, since you are
trying to address a location outside the bounds of the array. Check the length of
the arrays used or the value denoting the length of the arrays.
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4
Using the Parallel Library

DXML includes a parallel library that can yield dramatic performance
improvements on symmetric multiprocessing (SMP) systems. The DXML parallel
library contains the same set of subprograms as the serial library except a subset
of the subprograms has been parallelized. The parallel subprograms have names
and calling parameters that are identical to the serial versions.

You do not have to make any changes in your source code to use the parallel
library. Simply link your source code with the parallel library, and DXML
automatically supplies the parallel subprograms.

Where parallel versions are unavailable, DXML supplies the serial versions.
At run time you declare the number of processors on your SMP system
with environment variables. For complete information on the procedure, see
Section 5.3.

The following subcomponents of the DXML library contain key subprograms that
have been modified to execute in parallel if run on SMP hardware:

• Level 2 BLAS

• Level 3 BLAS

• LAPACK

• Signal Processing

• Iterative Solvers

• Skyline Solvers

See Section 4.1 for a list of the parallel subprograms.

In some cases, a parallel subprogram in one subcomponent of the library benefits
the subprograms in another subcomponent. For example, LAPACK subprograms
that call the parallel versions of Level 2 or Level 3 BLAS subprograms show
performance improvement. See Section 4.2.3 for details. Additionally, some
Level 2 and Level 3 serial BLAS subprograms benefit by calling other BLAS
subprograms that are parallel. See Section 4.2.2 for details.

4.1 DXML Parallel Subprograms
Table 4–1 lists parallel subprograms by subcomponent.

Using the Parallel Library 4–1



Table 4–1 Parallel Subprograms

Name Subcomponent

{S,D,C,Z}GEMV Level 2 BLAS (Chapter 8)

{S,D,C,Z}GEMM Level 3 BLAS (Chapter 9)

{S,D,C,Z}GETRF LAPACK manpage computational routines

{S,D,C,Z}POTRF "

{S,D,C,Z}FFT Signal Processing (Chapter 11)

{S,D,C,Z}FFT_INIT "

{S,D,C,Z}FFT_APPLY "

{S,D,C,Z}FFT_EXIT "

{S,D,C,Z}FFT_2D "

{S,D,C,Z}FFT_INIT_2D "

{S,D,C,Z}FFT_APPLY_2D "

{S,D,C,Z}FFT_EXIT_2D "

{S,D,C,Z}FFT_3D "

{S,D,C,Z}FFT_INIT_3D "

{S,D,C,Z}FFT_APPLY_3D "

{S,D,C,Z}FFT_EXIT_3D "

DITSOL_DRIVER Iterative Solver (Chapter 12)

DMATVEC_DRIVER "

DPCONDL_DRIVER "

DPCONDR_DRIVER "

DITSOL_PBCG "

DITSOL_PCG "

DITSOL_PCGS "

DITSOL_PGMRES "

DITSOL_PLSCG "

DITSOL_PTFQMR "

DMATVEC_GENR Iterative Solver (Chapter 12) continued

(continued on next page)
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Table 4–1 (Cont.) Parallel Subprograms

Name Subcomponent

DMATVEC_SDIA "

DMATVEC_UDIA "

DCREATE_DIAG_GENR "

DCREATE_DIAG_SDIA "

DCREATE_DIAG_UDIA "

DAPPLY_DIAG_ALL "

DCREATE_POLY_GENR "

DCREATE_POLY_SDIA "

DCREATE_POLY_UDIA "

DAPPLY_POLY_GENR "

DAPPLY_POLY_SDIA "

DAPPLY_POLY_UDIA "

DSSKYF Skyline Solvers (Chapter 13)

DUSKYF "

4.2 Performance Considerations for Parallel Execution
The following sections point out considerations about performance improvement
using parallel subprograms.

4.2.1 Single Processor Systems
The parallel version of a subprogram may not run as quickly as the serial
version on a single processor system. Overhead due to either the parallel
processing software or changes in the implementation of the algorithm to make it
parallelizable can cause reduced performance.

4.2.2 Level 2 and Level 3 BLAS Subprograms
Some Level 2 and most Level 3 BLAS serial subprograms use other subprograms
that have parallel versions. For example, most Level 3 BLAS subprograms
use the corresponding parallelized {S,D,C,Z}GEMM subprograms. Specifically,
DSYMM uses DGEMM, CTRMM uses CGEMM, and STRSM uses both SGEMM
and SGEMV. Moreover, some Level 3 BLAS subprograms use the corresponding
parallelized {S,D,C,Z}GEMV subprograms.

In the case of Level 2 BLAS, many subprograms use {S,D,C,Z}GEMV. For
example, ZTRSV uses ZGEMV. To the extent serial subprograms use parallel
versions of other subprograms, they will run faster in a multi-processor
environment, if you have linked your application to the parallel library.

4.2.3 LAPACK Subprograms
LAPACK subprograms that call the parallel versions of {S,D,C,Z}GEMM or
{S,D,C,Z}GEMV will run faster in a multi-processor environment. For example,
if you are using DGESV to solve a system of linear equations, linking your
application to the parallel library results in improved performance.
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4.2.4 Signal Processing Subprograms
All the Fast Fourier Transform subprograms in the signal processing
subcomponent of the DXML library have parallel versions. The parallel versions
run faster than the serial versions primarily when you use them with larger
input data arrays, where the parallel initialization is small in comparison to the
computations involved.

For example, using the parallel version of a one-dimensional FFT subprogram
with an input array containing 8K or more elements generally results in a faster
run time. When the input array contains less than 8K elements, the serial
version often gives better results on an SMP system. DIGITAL recommends that
you link your application with both libraries and compare the results.

4.2.5 Iterative Solver Subprograms
The performance improvement obtained by the use of parallel iterative solver
subprograms is dependent not only on the system characteristics, but also on
the properties of the linear system, such as the size of the matrix, the number
of diagonals, the preconditioner used, and so on. In some cases, the performance
can be improved by considering other options. For example, in the case of a
symmetric matrix with few diagonals stored in the SDIA storage scheme, the
parallel version may not yield the expected performance improvement. In this
case, using the UDIA storage scheme, and trading off the extra memory required
with the better parallelization properties of the UDIA scheme, may result in an
overall reduction in the execution time.

4.2.6 Skyline Solver Subprograms
The factorization routines for symmetric and unsymmetric skyline matrices have
been parallelized for all storage modes. Due to the overhead introduced during
parallelization, these routines will run faster than the serial routines primarily
when the problem size is large. Further, the performance improvement may
depend on the profile of the matrix, with a uniform profile resulting in better load
balancing, and consequently, better speedup on multi-processor systems.
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5
Compiling and Linking an Application Program

Compiling and linking your application program with DXML is usually performed
by a single command, the f77 command for Fortran 77, the f90 command for
Fortran 90, and the cc command for C.

5.1 DXML Libraries
The DXML development kit provides three libraries:

• Serial shareable installed at /usr/shlib/libdxml.so

• Parallel shareable installed at /usr/shlib/libdxmlp.so

• Serial archive installed at /usr/lib/libdxml.a

The serial and the parallel shared libraries each contain a complete set of DXML
routines called by identical routine names. In the parallel library some of these
routines are parallelized to take advantage of additional CPUs in shared memory
configurations; the remaining routines in the parallel library are the serial
versions. See Section 4.1 for a complete list of DXML parallel routines.

The following sections show how to compile and link an application program to
each of the DXML libraries. For more details about compiling and linking your
application, see the reference (man) pages of f77 and cc .

5.2 Compiling and Linking to the Serial Library
The following examples show how to compile and link to the serial shared library.

Fortran examples:

f77 program.f -ldxml

f90 program.f90 -ldxml

C example:

cc program.c -ldxml

5.3 Compiling and Linking to the Parallel Library
The following examples show how to compile and link to the parallel shared
library.

Fortran examples:

f77 program.f -ldxmlp

f90 program.f90 -ldxmlp

C example:

cc program.c -ldxmlp
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Parallel Execution Environment Variable
Before you can run programs compiled and linked with the parallel version of
DXML, you must set the following environment variable:

OMP_NUM_THREADS <integer>

Replace <integer> with a positive number equal to the number of parallel
threads to use. The number of parallel threads is usually equal to the number
of processors on the system. Do not specify more parallel threads than there
are processors to avoid performance degradation.

For example, to run a program on a multiprocessor system with three parallel
threads and a thread stack size of 256K bytes, set the environment variables as
follows:

setenv OMP_NUM_THREADS 3

5.4 Compiling and Linking to the Archive Library
The following examples show how to compile and link to the archive library.

Fortran examples:

f77 program.f /usr/lib/libdxml.a

f90 program.f90 /usr/lib/libdxml.a

C example:

cc program.c /usr/lib/libdxml.a -lfor
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6
Using the Level 1 BLAS Subprograms and

Extensions

The Level 1 BLAS (Basic Linear Algebra Subprograms) subprograms and the
Extensions to the Level 1 BLAS subprograms perform vector-vector operations
commonly occurring in many computational problems in linear algebra. This
chapter provides information about the following topics:

• Operations performed by the Level 1 BLAS subprograms and their Extensions
(Section 6.1)

• Vector storage (Section 6.2)

• Accuracy (Section 6.1.2)

• Subprogram naming conventions (Section 6.3)

• Subprogram summaries (Section 6.4 )

• Calling Level 1 BLAS subprograms (Section 6.5)

• Arguments and definitions used in the subprograms (Sections 6.6 and 6.8)

• Error handling (Section 6.7)

• A look at a Level 1 Extensions subprogram and its use (Section 6.9)

A description of each Level 1 and Level 1 Extension subprogram follows this
chapter.

6.1 Level 1 BLAS Operations
BLAS Level 1 operations work with vectors.

6.1.1 Types of Operations
The Level 1 BLAS subprograms and the Extensions usually operate on only one
vector, but a few of the subprograms involve operations on two vectors. The
subprograms can be classified into two types:

• Vector output is returned from a vector input.
The results of these operations are independent of the order in which the
elements of the vector are processed.

• Scalar output is returned from a vector input.
The results of these reduction operations usually depend on the order in
which the elements of the vector are processed.
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6.1.2 Accuracy
Because of the efficient coding of the subprograms, in some cases, the results
obtained might not match the results obtained using the conventional order of
evaluation. Whenever this could happen, it is stated in the reference description
for that subprogram.

6.2 Vector Storage
For the Level 1 BLAS and the Extensions subprograms, a vector is stored in a
one-dimensional array.

6.2.1 Defining a Vector in an Array
A vector is usually stored in a one- or two-dimensional array. The elements of a
vector are stored in order, but the elements are not necessarily contiguous.

If a vector is complex, each vector element has the form a + bi. For each
complex element, two storage locations in succession are needed to store a and b.
Therefore, storing a complex vector requires twice the number of storage locations
as storing a real vector of the same precision.

An array can be much larger than a vector that is stored in the array. The
storage of a vector is defined using three arguments in a DXML subprogram
argument list:

• Vector length: Number of elements in the vector

• Vector location: Base address of the vector in the array

• Stride: Space, or increment, between consecutive elements in the array

These three arguments together specify which elements of an array are selected
to become the vector.

6.2.1.1 Vector Length
To specify the length n of a vector, you specify an integer value for a length
argument, such as the n argument. The length of a vector can be less than the
length of the array that specifies the vector.

Vector length can also be thought of as the number of elements of the associated
array that a subroutine will process. Processing continues until n elements have
been processed.

6.2.1.2 Vector Location
The location of a vector is specified by the argument for the vector in the DXML
subprogram argument list. Usually, an array such as X is declared, for example,
X(1:20) or X(20). In this case, if you want to specify vector x as starting at the
first element of an array X, the argument is specified as X(1) or X. If you want to
specify vector x as starting at the fifth element of X, the argument is specified as
X(5).

However, in an array X that is declared as X(3:20), with a lower bound and an
upper bound given for the dimension, specifying vector x as starting at the fifth
element of X means that the argument is specified as X(7).

For a two-dimensional array X that is declared as X(1:10,1:20) or X(10,20),
specifying the vector x as starting at the seventh row and eleventh column of X
means that the argument is specified as X(7,11).

6–2 Using the Level 1 BLAS Subprograms and Extensions



Most of the examples shown in this manual assume that the lower bound in each
dimension of an array is 1. Therefore, the lower bound is not specified, and the
value of the upper bound is the number of elements in that dimension. So, a
declaration of X(50) means X has 50 elements.

When vector elements are selected by the DXML subprogram, the starting point
for the selection of vector elements is not always the location of the vector as
specified by the argument passed to the DXML subroutine. Which element is
the starting point for processing depends on whether the spacing parameter is
positive, negative, or zero.

6.2.1.3 Stride of a Vector
The spacing parameter, called the increment or stride, indicates how to move from
the starting point through the array to select the vector elements from the array.
The increment is specified by an argument in the DXML subprogram argument
list, such as the incx argument. Because one vector element does not necessarily
immediately follow another, the increment specifies the size of the step (or stride)
between elements.

The sign (+ or �) of the stride indicates the direction in which the vector elements
are selected:

• Forward indexing

The stride is positive. Vector elements are stored forward in the array in the
order x1; x2; :::; xn. As the vector element index increases, the array element
index increases.

• Backward indexing

The stride is negative. Vector elements are stored backward in the array, in
the reverse order xn; xn�1; :::; x1. As the vector element index increases, the
array element index decreases.

The absolute value of the stride is the spacing between each element. An
increment of 1 indicates that the vector elements are contiguous. An increment
of 0 indicates that all the elements of a vector are selected from the same location
in the array.

6.2.1.4 Selecting Vector Elements from an Array
DXML uses the stride to select elements from the array to construct the vector
composed of these elements. The stride associates consecutive elements of the
vector with equally spaced elements of the array.

When the stride is positive:

• The location specified by the argument for the vector is the location of the
first element in the vector, x1.

• The starting point for the selection of elements is at the first vector element.

• The indexing is forward, with the vector elements stored forward in the array.

For example, consider the array X declared as X(10) with X defined as shown in
(6–1):

X = (10:0; 9:1; 8:2; 7:3; 6:4; 5:5; 4:6; 3:7; 2:8; 1:9) (6–1)

If you specify X, which means X(1), for the vector x, the first element processed is
the first element of X, which is 10.0. If you specify X(3) for the vector x, the first
element processed is the third element of X, which is 8.2.
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To select the vector from the array, DXML adds the stride to the starting point
and processes the number of elements you specify. For example, if the location of
the vector is X(2), the stride is 2, and the vector length is 4, the vector is

x = (9:1; 7:3; 5:5; 3:7)

Processing begins at array element X(2), which is 9.1, and processing ends at
array element X(8), which is 3.7.

If you are using a two-dimensional array for vector storage, remember that array
elements are selected as they are stored, column by column. See Section 2.6.2, for
this storage information.

For example, consider the array X declared as X(4,4) with X defined as shown in
(6–2):

X =

2
64
1:0 2:0 3:0 4:0
5:0 6:0 7:0 8:0
8:0 7:0 6:0 5:0
4:0 3:0 2:0 1:0

3
75 (6–2)

If the location of the vector x is X(4,1), the stride is 3, and the vector length is 5,
the vector is

x = (4:0; 7:0; 7:0; 4:0; 1:0)

When the increment is negative, vector elements are selected as follows:

• The location specified by the argument for the vector is the location of the last
element in the vector, xn.

• DXML calculates the starting point for the selection of elements by
considering the location of the vector, the increment, and the number of
elements to process.

• The indexing is backward. Vector elements are stored backwards in the array.

For example, consider the array X declared as X(12) with X defined as shown in
(6–3):

X = (1:0; 2:0; 3:0; 4:0; 5:0; 6:0; 7:0; 8:0; 9:0; 10:0; 11:0; 12:0) (6–3)

If the location of the vector is X(3), the increment is �2, and the vector length is
5, the vector is

x = (11:0; 9:0; 7:0; 5:0; 3:0)

In this case, processing begins at array element X(11), which is 11.0, and
processing ends at array element X(3), which is 3.0.

When the increment is 0, the location specified by the argument such as the x
argument, is the only array element used in the selection of the vector. Each
element of the vector has the same value.

For example, consider the array X declared as X(6) with X defined as shown in
(6–4):

X = (1:0; 2:0; 3:0; 4:0; 5:0; 6:0) (6–4)

If the location of the vector is X(3), the increment is 0, and the number of
elements to process is 5, the vector is

x = (3:0; 3:0; 3:0; 3:0; 3:0)
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6.2.2 Storing a Vector in an Array
Suppose X is a real one-dimensional array of ndim elements. Let vector x have
length n and let incx be the increment used to access the elements of vector x
whose components xi; i = 1; . . . ; n, are stored in X.

If incx � 0, and if the location of the vector is specified at the first element of the
array, then xi is stored in the array location as shown in (6–5):

X(1 + (i� 1) � incx) (6–5)

If incx = 0, and if the location of the vector is specified at the first element of the
array, all the elements of the vector x are at the same array location, X(1).

If incx < 0, and if the location of the vector is specified at the first element of the
array, then xi is stored in the array location as shown in (6–6):

X(1 + (n� i) � jincxj) (6–6)

Therefore, ndim, the number of elements in the array, follows the condition shown
in (6–7):

ndim � 1 + (n� 1) � jincxj (6–7)

For the general case where the location of the vector in the array is at the point
X(BP) rather than at the first element of the array, (6–8) or (6–9) can be used to
find the position of each vector element xi in a one-dimensional array.

For incx � 0,
X(BP + (i� 1) � incx) (6–8)

For incx < 0,
X(BP + (n� i) � jincxj) (6–9)

For example, suppose that BP = 3, ndim = 20, and n = 5. Then a value of incx = 2
implies that x1, x2, x3, x4, and x5 are stored in array elements X(3), X(5), X(7),
X(9), and X(11). However, if incx = �2, then x1, x2, x3, x4, and x5 are stored in
array elements X(11), X(9), X(7), X(5), and X(3).

With a suitable choice for the location of a vector, you can operate on vectors
that are embedded in other vectors or matrices. For example, consider an m by n
matrix A, stored in an md by nd array.

The jth column of the matrix is a vector represented by:

base address: A(1,j)

increment: 1

length: m

The ith row of the matrix is a vector represented by:

base address: A(i,1)

increment: md

length: n

Using the Level 1 BLAS Subprograms and Extensions 6–5



The main diagonal of the matrix is a vector represented by:

base address: A(1,1)

increment: md + 1

length: min(m,n)

6.3 Naming Conventions
Table 6–1 shows the characters used in the names of the Level 1 BLAS and the
Extensions and what the characters mean.

Table 6–1 Naming Conventions: Level 1 BLAS Subprograms

Character Group Mnemonic Meaning

First group I Computes the index of a particular vector
element.

No mnemonic Computes the value of a particular vector
element or performs an operation on one or
more vectors.

Second group S Single-precision real data.

D Double-precision real data.

C Single-precision complex data.

Z Double-precision complex data.

Third group A combination of
letters at the end
such as AMIN or
AXPY

Type of computation such as Absolute (A)
Minimum (MIN) or Scalar (A) Times a Vector
(X) Plus (P) a Vector (Y).

For example, the name ICAMIN is the subprogram for computing the index of the
element of a single-precision complex vector having the minimum absolute value.

6.4 Summary of Level 1 BLAS Subprograms
Tables 6–2 and 6–3 summarize the BLAS Level 1 subprograms and the extension
subprograms.

Table 6–2 Summary of Level 1 BLAS Subprograms

Subprogram
Name Operation

ISAMAX Calculates, in single-precision arithmetic, the index of the element of a
real vector with maximum absolute value.

IDAMAX Calculates, in double-precision arithmetic, the index of the element of a
real vector with maximum absolute value.

ICAMAX Calculates, in single-precision arithmetic, the index of the element of a
complex vector with maximum absolute value.

(continued on next page)
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Table 6–2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram
Name Operation

IZAMAX Calculates, in double-precision arithmetic, the index of the element of a
complex vector with maximum absolute value.

SASUM Calculates, in single-precision arithmetic, the sum of the absolute
values of the elements of a real vector.

DASUM Calculates, in double-precision arithmetic, the sum of the absolute
values of the elements of a real vector.

SCASUM Calculates, in single-precision arithmetic, the sum of the absolute
values of the elements of a complex vector.

DZASUM Calculates, in double-precision arithmetic, the sum of the absolute
values of the elements of a complex vector.

SAXPY Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

DAXPY Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

CAXPY Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

ZAXPY Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

SCOPY Copies a real, single-precision vector.

DCOPY Copies a real, double-precision vector.

CCOPY Copies a complex, single-precision vector.

ZCOPY Copies a complex, double-precision vector.

SDOT Calculates the inner product of two real, single-precision vectors.

DDOT Calculates the inner product of two real, double-precision vectors.

DSDOT Calculates the inner product of two real, single-precision vectors using
double precision arithmetic operations and returns a double-precision
result.

CDOTC Calculates the conjugated inner product of two complex, single-
precision vectors.

ZDOTC Calculates the conjugated inner product of two complex, double-
precision vectors.

CDOTU Calculates the unconjugated inner product of two complex, single-
precision vectors.

ZDOTU Calculates the unconjugated inner product of two complex, double-
precision vectors.

SDSDOT Calculates the inner product of two real, single-precision vectors using
double-precision arithmetic operations, adds the inner product result to
a real single-precision scalar, and returns a single-precision value.

(continued on next page)
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Table 6–2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram
Name Operation

SNRM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a real vector.

DNRM2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the elements of a real vector.

SCNRM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a complex vector.

DZNRM2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the elements of a complex vector.

SROT Applies a real Givens plane rotation to two real, single-precision
vectors.

DROT Applies a real Givens plane rotation to two real, double-precision
vectors.

CROT Applies a complex Givens plane rotation to two single-precision complex
vectors.

ZROT Applies a complex Givens plane rotation to two double-precision
complex vectors.

CSROT Applies a real Givens plane rotation to two complex, single-precision
vectors.

ZDROT Applies a real Givens plane rotation to two complex, double-precision
vectors.

SROTM Applies a modified Givens transformation to two real, single-precision
vectors.

DROTM Applies a modified Givens transformation to two real, double-precision
vectors.

SROTG Generates the real elements for a real, single-precision Givens plane
rotation.

DROTG Generates the elements for a real, double-precision Givens plane
rotation.

CROTG Generates the elements for a complex, single-precision Givens plane
rotation.

ZROTG Generates the real elements for a complex, double-precision Givens
plane rotation.

SROTMG Generates the real elements for a real, single-precision Givens
transform.

DROTMG Generates the real elements for a real, double-precision Givens
transform.

SSCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector.

(continued on next page)

6–8 Using the Level 1 BLAS Subprograms and Extensions



Table 6–2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram
Name Operation

DSCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector.

CSCAL Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector.

ZSCAL Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector.

CSSCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a complex vector.

ZDSCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a complex vector.

SSWAP Swaps the elements of two real, single-precision vectors.

DSWAP Swaps the elements of two real, double-precision vectors.

CSWAP Swaps the elements of two complex, single-precision vectors.

ZSWAP Swaps the elements of two complex, double-precision vectors.

Table 6–3 Summary of Extensions to Level 1 BLAS Subprograms

Subprogram
Name Operation

ISAMIN Calculates, in single-precision arithmetic, the index of the element of a
real vector with minimum absolute value.

IDAMIN Calculates, in double-precision arithmetic, the index of the element of a
real vector with minimum absolute value.

ICAMIN Calculates, in single-precision arithmetic, the index of the element of a
complex vector with minimum absolute value.

IZAMIN Calculates, in double-precision arithmetic, the index of the element of a
complex vector with minimum absolute value.

ISMAX Calculates, in single-precision arithmetic, the index of the real vector
element with maximum value.

IDMAX Calculates, in double-precision arithmetic, the index of the real vector
element with maximum value.

ISMIN Calculates, in single-precision arithmetic, the index of the real vector
element with minimum value.

IDMIN Calculates, in double-precision arithmetic, the index of the real vector
element with minimum value.

SAMAX Calculates, in single-precision arithmetic, the largest absolute value of
the elements of a real vector.

DAMAX Calculates, in double-precision arithmetic, the largest absolute value of
the elements of a real vector.

(continued on next page)
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Table 6–3 (Cont.) Summary of Extensions to Level 1 BLAS Subprograms

Subprogram
Name Operation

SCAMAX Calculates, in single-precision arithmetic, the largest absolute value of
the elements of a complex vector.

DZAMAX Calculates, in double-precision arithmetic, the largest absolute value of
the elements of a complex vector.

SAMIN Calculates, in single-precision arithmetic, the smallest absolute value
of the elements of a real vector.

DAMIN Calculates, in double-precision arithmetic, the smallest absolute value
of the elements of a real vector.

SCAMIN Calculates, in single-precision arithmetic, the smallest absolute value
of the elements of a complex vector.

DZAMIN Calculates, in double-precision arithmetic, the smallest absolute value
of the elements of a complex vector.

SMAX Calculates, in single-precision arithmetic, the largest value of the
elements of a real vector.

DMAX Calculates, in double-precision arithmetic, the largest value of the
elements of a real vector.

SMIN Calculates, in single-precision arithmetic, the smallest value of the
elements of a real vector.

DMIN Calculates, in double-precision arithmetic, the smallest value of the
elements of a real vector.

SNORM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a real vector.

DNORM2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the elements of a real vector.

SCNORM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the absolute value of the elements of a complex vector.

DZNORM2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the absolute value of the elements of a complex vector.

SNRSQ Calculates, in single-precision arithmetic, the sum of the squares of the
elements of a real vector.

DNRSQ Calculates, in double-precision arithmetic, the sum of the squares of
the elements of a real vector.

SCNRSQ Calculates, in single-precision arithmetic, the sum of the squares of the
absolute value of the elements of a complex vector.

DZNRSQ Calculates, in double-precision arithmetic, the sum of the squares of
the absolute value of the elements of a complex vector.

(continued on next page)
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Table 6–3 (Cont.) Summary of Extensions to Level 1 BLAS Subprograms

Subprogram
Name Operation

SSET For single-precision data, sets all the elements of a real vector equal to
a real scalar.

DSET For double-precision data, sets all the elements of a real vector equal to
a real scalar.

CSET For single-precision data, sets all the elements of a complex vector
equal to a complex scalar.

ZSET For double-precision data, sets all the elements of a complex vector
equal to a complex scalar.

SSUM Calculates, in single-precision arithmetic, the sum of the values of the
elements of a real vector.

DSUM Calculates, in double-precision arithmetic, the sum of the values of the
elements of a real vector.

CSUM Calculates, in single-precision arithmetic, the sum of the values of the
elements of a complex vector.

ZSUM Calculates, in double-precision arithmetic, the sum of the values of the
elements of a complex vector.

SVCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector.

DVCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector.

CVCAL Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector.

ZVCAL Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector.

CSVCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a complex vector.

ZDVCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a complex vector.

SZAXPY Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

DZAXPY Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

CZAXPY Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

ZZAXPY Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.
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6.5 Calling Subprograms
The BLAS Level 1 and Extensions subprograms consist of both functions and
subroutines:

• Functions

Return a scalar
Require a functions reference from a program
Processing does not change arguments
Documented with a Function Value section

• Subroutines

Return a vector
Require a CALL statement from a program
Processing overwrites an output argument with the output vector
No Function Value section

6.6 Argument Conventions
The subprograms use a list of arguments to specify the requirements and control
the result of the subprogram. All arguments are required. The argument list is
in the same order for each subprogram:

• Arguments that define the length of the input vectors
The n argument specifies the length of the input vectors. The values n < 0,
n = 0, and n > 0 are all allowed. However, for n � 0, either the output
vector is unchanged or the function value is immediately set equal to a value
specified previously.

• Arguments that specify the input scalar
The alpha argument defines the input scalar.

• Arguments that describe the input and output vectors
In addition to the n argument, the following arguments describe a vector:

The arguments x, y, and z define the location of the vectors x, y, and z in
the array. In the usual case, the argument x specifies the location in the
array as X(1), but the location can be specified at any other element of the
array. An array can be much larger than the vector that it contains.

The arguments incx, incy, and incz provide the increment between
the elements of the vector x, vector y, and vector z, respectively. The
increment can be positive, negative, or zero. The vector can be stored
forward or backward in the array.

Not every type of argument is needed by every subprogram.

6.7 Error Handling
The Level 1 BLAS subprograms assume that input parameters are correct and
provide no feedback when problems occur. You must ensure that all input data
for these subprograms is correct.
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6.8 Definition of Absolute Value
Real subprograms that calculate an absolute value define the absolute value in
the following way:

jxj j = xj if x is positive

jxj j = �xj if x is negative

Complex subprograms define the absolute value in a way that depends on the
subprogram and its operations. The definitions are consistent with the definitions
used in the BLAS Level 1 subprograms.

In some cases, the definition is the strict definition of the absolute value of a
complex number, that is, the square root of the sum of the squares of the real
part and the imaginary part:

jxj j =
q
a2
j + b2

j =

q
real2 + imaginary2

In other cases, the definition for the absolute value of a complex number is the
absolute value of the real part plus the absolute value of the imaginary part:

jxj j = jaj j+ jbj j = jrealj+ jimaginaryj

The subprogram name does not specify the definition used. Check the
Description section of the subprogram reference description for the definition
used for that subprogram.

6.9 A Look at a Level 1 Extensions Subprogram
To understand the meaning of the arguments, consider the subroutine SVCAL.
SVCAL computes the product of a real scalar � and a real (n-element) vector x,
and the result is returned in the vector y. SVCAL has the arguments n, alpha,
x, incx, y, and incy as shown in the following code:

REAL*4 X(100), Y(200), ALPHA
INCX = 1
INCY = 2
ALPHA = 3.2
N = 100
CALL SVCAL(N,ALPHA,X,INCX,Y,INCY)

The argument x specifies the array X with 100 elements and specifies X(1) as
the location of the vector x whose elements are embedded in X. Since n = 100,
the vector also has 100 elements. The length of the array X is the same as the
length of the vector x. The incx is positive, indicating the vector starts at the
first array element. Because incx = 1, the vector elements are contiguous in the
array. Since incy is 2, each element of the array is multiplied by 3.2 and stored
in array Y, beginning at Y(1), in the locations Y(1), Y(3), Y(5), and so on.

As another example, if vector x has 20 elements, the starting point of the vector
is X(1), and the elements are selected from the array X with an increment of 3,
then the array X must have at least (1 + (n� 1)jincxj) or 58 elements to store the
vector. The following code shows this case:

REAL*4 X(58), Y(200), ALPHA
INCX = 3
INCY = 2
ALPHA = 3.2
N = 20
CALL SVCAL(N,ALPHA,X,INCX,Y,INCY)
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In this case, elements X(1), X(4), X(7), . . . , X(58) of the array are multiplied
by 3.2 and are stored in array Y, beginning at Y(1), in the locations Y(1), Y(3),
Y(5), . . . , Y(39).

When the increment is negative, the starting point for the vector selection is at
the last element of the vector. Consider the following code where the increment is
�2 and the starting point is specified as X(20):

REAL*4 X(100), Y(200), ALPHA
INCX = -2
INCY = 2
ALPHA = 3.2
N = 6
CALL SVCAL(N,ALPHA,X(20),INCX,Y,INCY)

The vector x has 6 elements. The elements selected to form the vector are X(30),
X(28), X(26), X(24), X(22), and X(20). Each of these elements is multiplied by 3.2
and the results are stored in Y(1), Y(3), Y(5), Y(7), Y(9), and Y(11), respectively.
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Level 1 BLAS Subprograms

This section provides descriptions of the Level 1 BLAS subprograms, combining
real and complex versions of the subprograms.

A complex number has the form a + bi where a is a real number called the real
part, b is a real number called the imaginary part, and i=

p�1. The vectors used
in these subprograms represent a row or column of a matrix and can be indexed
either forward or backward.





ISAMAX IDAMAX ICAMAX IZAMAX

ISAMAX IDAMAX ICAMAX IZAMAX
Index of the Element of a Vector with Maximum Absolute Value

Format

I{S,D,C,Z}AMAX (n, x, incx)

Function Value

imax
integer*4
The index of the element of the vector x that is the largest in absolute value of all
elements of the vector. If n�0, imax returns the value 0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

Description

These functions determine the first integer i among the elements of the vector x
such that:

jxij = max
�jxj j; j = 1; 2; :::; n

	
You can use these functions to obtain the pivots in Gaussian elimination.

For complex vectors, each element of the vector is a complex number. In these
subprograms, the absolute value of a complex number is defined as the absolute
value of the real part plus the absolute value of the imaginary part:

jxj j = jaj j+ jbj j = jrealj+ jimaginaryj

If incx < 0, the result depends on how the program is processed. See the coding
information in this document for a discussion of the possible results. If incx = 0,
the computation is a time-consuming way of setting imax = 1.
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Example

INTEGER*4 IMAX, N, INCX, ISAMAX
REAL*4 X(40)
INCX = 2
N = 20
IMAX = ISAMAX(N,X,INCX)

This Fortran code shows how to compute the index of a real vector element with
maximum absolute value.
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SASUM DASUM SCASUM DZASUM
Sum of the Absolute Values

Format

{S,D}ASUM (n, x, incx)

SCASUM (n, x, incx)

DZASUM (n, x, incx)

Function Value

sum
real*4 | real*8
The sum of the absolute values of the elements of the vector x.
If n�0, sum returns the value 0.0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

Description

The SASUM and DASUM functions compute the sum of the absolute values of
the elements of a real vector x:

nX
i=1

jxij = jx1j+ jx2j+ . . . + jxnj
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SCASUM and DZASUM compute the sum of the absolute values of the real and
imaginary parts of the elements of a complex vector x:

nX
i=1

(jaij+ jbij) = (ja1j+ jb1j) + (ja2j+ jb2j) + . . . + (janj+ jbnj)

where xi = (ai; bi) and jxij = jaij+ jbij = jrealj+ jimaginaryj
If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting sum = nx1.

Because of the efficient coding of these routines, rounding errors can cause the
final result to differ from the result computed by a sequential evaluation of the
sum of the elements of the vector.

Example

INTEGER*4 N, INCX
REAL*4 X(20), SUM, SASUM
INCX = 1
N = 20
SUM = SASUM(N,X,INCX)

This Fortran code shows how to compute the sum of the absolute values of the
elements of the vector x.
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SAXPY DAXPY CAXPY ZAXPY
Vector Plus the Product of a Scalar and a Vector

Format

{S,D,C,Z}AXPY (n, alpha, x, incx, y, incy)

Arguments

n
integer*4
On entry, the number of elements in the vectors x and y.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar multiplier � for the elements of the vector x.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj),
containing the elements of the vector y.

On exit, if n�0 or � = 0, y is unchanged. If n > 0, y is overwritten; yi is replaced
by yi + �xi.

incy
integer*4
On entry, the increment for the array Y.
If incy > 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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Description

The _AXPY functions compute the following scalar-vector product and sum:

y �x+ y

where � is a scalar, and x and y are vectors.

If any element of x or the scalar � share a memory location with an element of y,
the results are unpredictable.

If incx = 0, the computation is a time-consuming way of adding the constant �x1
to all the elements of y. The following chart shows the operation that results
from the interaction of the values for arguments incx and incy:

incx = 0 incx 6= 0

incy = 0 y1 = y1 + n�x1 y1 = y1 +
Pn

i=1 �xi

incy 6= 0 yi = yi + �x1 yi = yi + �xi

Example

INTEGER*4 N, INCX, INCY
REAL*4 X(20), Y(20), ALPHA
INCX = 1
INCY = 1
ALPHA = 2.0
N = 20
CALL SAXPY(N,ALPHA,X,INCX,Y,INCY)

This Fortran code shows how all elements of the real vector x are multiplied by
2.0, added to the elements of the real vector y, and the vector y is set equal to the
result.
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SCOPY DCOPY CCOPY ZCOPY
Copy of a Vector

Format

{S,D,C,Z}COPY (n, x, incx, y, incy)

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by xi.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.

Description

The _COPY subprograms copy the elements of the vector x to the vector y,
performing the following operation:

yi xi

If incx = 0, each yi is set to x1. Therefore, you can use incx = 0 to initialize all
elements to a constant.
If incy = 0, the computation is a time-consuming way of setting y1 = xn, the last
referenced element of the vector x.
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If incy = �incx, the vector x is stored in reverse order in y. In this case, the call
format is as follows:

CALL SCOPY (N,X,INCX,Y,-INCX)

If any element of x shares a memory location with an element of y, the results
are unpredictable, except for the following special case. It is possible to move the
contents of a vector up or down within itself and not cause unpredictable results
even though the same memory location is shared between input and output. To
do this when i > j , call the subroutine with incx = incy > 0 as follows:

CALL SCOPY (N,X(I),INCX,X(J),INCX)

The call to SCOPY moves elements of the array X x(i); x(i+ 1 � incx); :::; x(i+ (n�
1) � incx) to new elements of the array X x(j); x(j +1 � incx); :::; x(j + (n� 1) � incx).
If i < j , specify a negative value for incx and incy in the call to the subroutine, as
follows. The parts that do not overlap are unchanged.

CALL SCOPY (N,X(I),-INCX,X(J),-INCX)

Examples

1. INTEGER*4 N, INCX, INCY
REAL*4 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL SCOPY(N,X,INCX,Y,INCY)

The preceding Fortran code copies a vector x to a vector y.

2. CALL SCOPY(N,X,-2,X(3),-2))

The preceding call moves the contents of X(1),X(3),X(5), . . . , X(2N-1) to
X(3),X(5), . . . , X(2N+1) and leaves the vector x unchanged.

3. CALL SCOPY(99,X(2),1,X,1))

The preceding call moves the contents of X(2),X(3), . . . , X(100) to
X(1),X(2), . . . , X(99) and leaves x100 unchanged.

4. CALL SCOPY(N,X,1,Y,-1))

The preceding call moves the contents of X(1),X(2),X(3), . . . , X(N) to
Y(N),Y(N-1), . . . , Y.
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SDOT DDOT DSDOT CDOTC ZDOTC CDOTU ZDOTU
Inner Product of Two Vectors

Format

{S,D}DOT (n, x, incx, y, incy)

DSDOT (n, x, incx, y, incy)

{C,Z}DOT{C,U} (n, x, incx, y, incy)

Function Value

dotpr
real*4 | real*8 | complex*8 | complex*16
The dot product of the two vectors x and y.

For real vectors, if n�0, dotpr returns the value 0.0.
For complex vectors, if n�0, dotpr returns (0.0, 0.0).

Arguments

n
integer*4
On entry, the number of elements in the vectors x and y.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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Description

SDOT, DDOT, and DSDOT compute the dot product of two real vectors. CDOTC
and ZDOTC compute the conjugated dot product of two complex vectors. CDOTU
and ZDOTU compute the unconjugated dot product of two complex vectors.

SDOT, DDOT, DSDOT are functions that compute the dot product of two n-
element real vectors, x and y:

x � y =
nX
i=1

xiyi = x1y1 + x2y2 + . . . + xnyn

The order of operations is different from the order in a sequential evaluation
of the dot product. The final result can differ from the result of a sequential
evaluation. The DSDOT function accepts single-precision input vectors but uses
double-precision operations to compute a double-precision result.

CDOTC and ZDOTC are functions that compute the conjugated dot product of
two complex vectors, x and y, that is, the complex conjugate of the first vector is
used to compute the dot product.

Each element xj of the vector x is a complex number and each element yj of the
vector y is a complex number. The conjugated dot product of two complex vectors,
x and y, is expressed as follows:

x � y =
nX
i=1

xiyi = x1y1 + x2y2 + . . . + xnyn

For example, x and y each have two complex elements:

x = (1 + i; 2� i); y = (3 + i; 3 + 2i)

The conjugate of vector x is x = (1� i; 2 + i), and the dot product is:

x � y = (1� i)(3 + i) + (2 + i)(3 + 2i) = (4� 2i) + (4 + 7i) = (8 + 5i))

CDOTU and ZDOTU compute the unconjugated dot product of two complex
vectors. The unconjugated dot product of two complex vectors, x and y, is
expressed as follows:

x � y =
nX
i=1

xiyi = x1y1 + x2y2 + . . . + xnyn

For example, for the same complex vectors x and y:

x � y = (1 + i)(2 + i) + (2� i)(3 + 2i) = (1 + 3i) + (8 + i) = 9 + 4i
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Example

INTEGER*4 INCX, INCY
REAL*4 X(20), Y(20), DOTPR, SDOT
INCX = 1
INCY = 1
N = 20
DOTPR = SDOT(N,X,INCX,Y,INCY)

This Fortran code shows how to compute the dot product of two vectors, x and y,
and return the result in dotpr.

INTEGER*4 INCX, INCY
COMPLEX*8 X(20), Y(20), DOTPR, CDOTU
INCX = 1
INCY = 1
N = 20
DOTPR = CDOTU(N,X,INCX,Y,INCY)

This Fortran code shows how to compute the unconjugated dot product of two
complex vectors, x and y, and return the result in dotpr.
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SDSDOT
Product of Scaled Vector and Vector

Format

SDSDOT (n, alpha, x, incx, y, incy)

Function Value

dotpr
real*4
The sum of the scalar alpha and the dot product of vectors x and y.

If n�0, dotpr returns the value in alpha.

Arguments

n
integer*4
On entry, the number of elements in the vectors x and y.
On exit, n is unchanged.

alpha
real*4
On entry, a scalar addend summed with the dot product of vectors x and y.
On exit, alpha is unchanged.

x
real*4
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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Description

SDSDOT computes the dot product of two single-precision real vectors, x and
y, using double-precision arithmetic. The resulting dot product is added to the
single-precision scalar value alpha to produce the single precision return value.

Example

INTEGER*4 INCX,INCY
REAL*8 X(20),Y(20),ALPHA
REAL*4 DOTPR,SDSDOT
INCX = 1
INCY = 1
ALPHA = 0.4
N = 20
DOTPR = SDSDOT(N,ALPHA,X,INCX,Y,INCY)
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SNRM2 DNRM2 SCNRM2 DZNRM2
Square Root of Sum of the Squares of the Elements of a Vector

Format

{S,D}NRM2 (n, x, incx)

SCNRM2 (n, x, incx)

DZNRM2 (n, x, incx)

Function Value

e_norm
real*4 | real*8
The Euclidean norm of the vector x, that is, the square root of the conjugated dot
product of x with itself.

If n�0, e_norm returns the value 0.0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

Description

SNRM2 and DNRM2 compute the Euclidean norm of a real vector; SCNRM2 and
DZNRM2 compute the Euclidean norm of a complex vector. The Euclidean norm
is the square root of the conjugated dot product of a vector with itself.

For real vectors: vuut nX
i=1

x2
i =

q
x2

1 + x2
2 + :::+ x2

n

For complex vectors:vuut nX
i=1

xi � xi =
p
(x1 � x1) + (x2 � x2) + :::+ (xn � xn)
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The order of operations is different from the order in a sequential evaluation of
the Euclidean norm. The final result can differ from the result of a sequential
evaluation.

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a

time-consuming way of setting e norm =
q
nx2

1.

Example

INTEGER*4 INCX, N
REAL*4 X(20), E_NORM
INCX = 1
N = 20
E_NORM = SNRM2(N,X,INCX)

This Fortran code shows how to compute the Euclidean norm of a real vector.
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SROT DROT CROT ZROT CSROT ZDROT
Apply Givens Plane Rotation

Format

{S,D,C,Z}ROT (n, x, incx, y, incy, c, s)

CSROT (n, x, incx, y, incy, c, s)

ZDROT (n, x, incx, y, incy, c, s)

Arguments

n
integer*4
On entry, the number of elements in the vectors x and y.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, if n�0 or if c is 1.0 and s is 0.0, x is unchanged. Otherwise, x is
overwritten; X contains the rotated vector x.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj). Y
contains the n elements of the vector y.

On exit, if n�0 or if c is 1.0 and s is 0.0, y is unchanged. Otherwise, y is
overwritten; Y contains the rotated vector y.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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c
real*4 | real*8
On entry, the first rotation element, that is, the cosine of the angle of rotation.
The argument c is the first rotation element generated by the _ROTG
subroutines.
On exit, c is unchanged.

s
real*4 | real*8 | complex*8 | complex*16
On entry, the second rotation element, that is, the sine of the angle of rotation.
The argument s is the second rotation element generated by the _ROTG
subroutines.
On exit, s is unchanged.

Description

SROT and DROT apply a real Givens plane rotation to each element in the pair
of real vectors, x and y. CSROT and ZDROT apply a real Givens plane rotation
to elements in the complex vectors, x and y. CROT and ZROT apply a complex
Givens plane rotation to each element in the pair of complex vectors x and y.

The cosine and sine of the angle of rotation are c and s, respectively, and are
provided by the BLAS Level 1 _ROTG subroutines.

The Givens plane rotation for SROT, DROT, CSROT, and ZDROT follows:�
xi
yi

�
 
�
c s
�s c

� �
xi
yi

�

The elements of the rotated vector x are xi cxi+ syi.
The elements of the rotated vector y are yi � sxi + cyi.

The Givens plane rotation for CROT and ZROT follows:�
xi
yi

�
 
�
c s
�s c

� �
xi
yi

�

The elements of the rotated vector x are xi cxi + syi.
The elements of the rotated vector y are yi � sxi + cyi.

If n�0 or if c = 1:0 and s = 0:0, x and y are unchanged. If any element of x shares
a memory location with an element of y, the results are unpredictable.

These subroutines can be used to introduce zeros selectively into a matrix.

Example

INTEGER*4 INCX, N
REAL X(20,20), A, B, C, S
INCX = 20
N = 20
A = X(1,1)
B = X(2,1)
CALL SROTG(A,B,C,S)
CALL SROT(N,X,INCX,X(2,1),INCX,C,S)

This Fortran code shows how to rotate the first two rows of a matrix and zero out
the element in the first column of the second row.
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SROTG DROTG CROTG ZROTG
Generate Elements for a Givens Plane Rotation

Format

{S,D,C.Z}ROTG (a, b, c, s)

Arguments

a
real*4 | real*8 | complex*8 | complex*16
On entry, the first element of the input vector.
On exit, a is overwritten with the rotated element r.

b
real*4 | real*8 | complex*8 | complex*16
On entry, the second element of the input vector. On exit, for SROTG and
DROTG, b is overwritten with the reconstruction element z. For CROTG and
ZROTG, b is unchanged.

c
real*4 | real*8
On entry, an unspecified variable.
On exit, c is overwritten with the first rotation element, that is, the cosine of the
angle of rotation.

s
real*4 | real*8 | complex*8 | complex*16
On entry, an unspecified variable.
On exit, s is overwritten with the second rotation element, that is, the sine of the
angle of rotation.

Description

The _ROTG subroutines construct a Givens plane rotation that eliminates the
second element of a two-element vector and can be used to introduce zeros
selectively into a matrix.

Using a and b to represent elements of an input real vector, the SROTG and
DROTG functions calculate the elements c and s of an orthogonal matrix such
that: �

c s
�s c

�
�
�
a
b

�
=

�
r
0

�

Using a and b to represent elements of an input complex vector, the CROTG and
ZROTG functions calculate the elements real c and complex s of an orthogonal
matrix such that: �

c s
�s c

�
�
�
a
b

�
=

�
r
0

�
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A real Givens plane rotation is constructed for values a and b by computing
values for r, c, s, and z, as follows:

r = p
p
a2 + b2

p = SIGN(a) if jaj > jbj
p = SIGN(b) if jaj�jbj
c = a

r if r is not equal to 0
c = 1 if r = 0

s = b
r if r is not equal to 0

s = 0 if r = 0

z = s if jaj > jbj
z = 1

c if jaj�jbj, c is not equal to 0, and r is not equal to 0.
z = 1 if jaj�jbj, c = 0, and r is not equal to 0.
z = 0 if r = 0

SROTG and DROTG can use the reconstruction element z to store the rotation
elements for future use. The quantities c and s are reconstructed from z as
follows:

For jzj = 1; c = 0:0 and s = 1:0

For jzj < 1, c =
p
1� z2 and s = z

For jzj > 1; c = 1
z and s =

p
1� c2

A complex Givens plane rotation is constructed for values a and b by computing
values for real c, complex s and complex r, as follows:

p =
p
jaj2 + jbj2

q = a
jaj

r = qp if jaj is not equal to 0.
r = b if jaj is equal to 0.

c =
jaj
p if jaj is not equal to 0.

c = 0 if jaj is equal to 0.

s = qb
p if jaj is not equal to 0.

s = (1:0; 0:0) if jaj is equal to 0.

The absolute value used in the previous definitions corresponds to the strict
definition of the absolute value of a complex number.

The arguments c and s are passed to the _ROT subroutines.

Example

REAL*4 A, B, C, S
CALL SROTG(A,B,C,S)

This Fortran code shows how to generate the rotation elements for a vector of
elements a and b.
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SROTM DROTM
Apply Modified Givens Transformation

Format

{S,D}ROTM (n, x, incx, y, incy, param)

Arguments

n
integer*4
On entry, the number of elements in the vectors x and y.
On exit, n is unchanged.

x
real*4 | real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, if n�0 or if PARAM(1) = (-2.0), x is unchanged. Otherwise, x is
overwritten; X contains the rotated vector x.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj). Y
contains the n elements of the vector y.

On exit, if n�0 or if PARAM(1) = (-2.0), y is unchanged. Otherwise, y is
overwritten; Y contains the rotated vector y.

incy
integer*4
On entry, the increment for the array Y.
If incy > 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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param
real*4 | real*8
On entry, an array defining the type of transform matrix H used:

PARAM(1) specifies the flag characteristic: -1.0, 0.0, 1.0, -2.0
PARAM(2) specifies H11 value
PARAM(3) specifies H21 value
PARAM(4) specifies H12 value
PARAM(5) specifies H22 value

On exit, param is unchanged.

Description

SROTM and DROTM apply a modified Givens transform to each element in the
pair of real vectors, x and y, using the transformation matrix H as follows:�

xi
yi

�
= H �

�
xi
yi

�

Depending on the value of PARAM(1), the transformation matrix H is defined as
follows:
• PARAM(1)= -1.0 �

H11 H12
H21 H22

�

• PARAM(1)= 0.0 �
1:0 H12
H21 1:0

�

• PARAM(1)= 1.0 �
H11 1:0
�1:0 H22

�

• PARAM(1)= -2.0 �
1:0 0:0
0:0 1:0

�

The array PARAM is generated by a call to the routine _ROTMG.

Results are unpredictable if either incx or incy are zero.
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Example

INTEGER*4 INCA, N
REAL A(10,10), D(10), SPARAM(5)

C
INCA = 10

C
C INITIALIZE D TO 1.0
C

DO I = 1, 10
D(I) = 1.0

END DO
C
C FOR EACH ROW OF THE MATRIX, ELIMINATE TO UPPER TRIANGULAR FORM
C

DO I = 2, 10
C
C ELIMINATE A(I,J) USING ELEMENT A(J,J)
C

JEND = I-1
DO J = 1, JEND

N = 10-J
CALL SROTMG(D(J),D(I),A(J,J),A(I,J),SPARAM)
CALL SROTM(N,A(J,J+1),INCA,A(I,J+1),INCA,SPARAM)

ENDDO
C

END DO
C
C APPLY ACCUMULATED SCALE FACTORS TO THE ROWS OF A
C

DO I = 1, 10
CALL SSCAL(11-I, SQRT(D(I)), A(I,I), INCA)

END DO

This Fortran code shows how to reduce a 10 by 10 matrix to upper triangular
form using the routine SROTMG and SROTM.
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SROTMG DROTMG
Generate Elements for a Modified Givens Transform

Format

{S,D}ROTMG (d1, d2, x1, y1, param)

Arguments

d1
real*4 | real*8
On entry, the first scale factor for the modified Givens transform.
On exit, d1 is updated.

d2
real*4 | real*8
On entry, the second scale factor for the modified Givens transform.
On exit, d2 is updated.

x1
real*4 | real*8
On entry, the first element x1 of the input vector.
On exit, x1 is overwritten with the rotated element.

y1
real*4 | real*8
On entry, the second element y1 of the input vector.
On exit, y1 is unchanged.

param
real*4 | real*8
On entry, param is unspecified.
On exit, param contains an array defining the transform matrix H as follows:

PARAM(1) specifies the flag characteristic: -1.0, 0.0, 1.0, -2.0
PARAM(2) specifies H11 value
PARAM(3) specifies H21 value
PARAM(4) specifies H12 value
PARAM(5) specifies H22 value

Description

The _ROTMG subroutines construct a modified Givens transform that eliminates
the second element of a two-element vector and can be used to introduce zeros
selectively into a matrix. These routines use the modification due to Gentleman
of the Givens plane rotations. This modification eliminates the square root from
the construction of the plane rotation and reduces the operation count when the
modified Givens rotation, rather than the standard Givens rotations are applied.
In most applications, the scale factors d1 and d2 are initially set to 1 and then
modified by _ROTMG as necessary.

Given real a and b in factored form:

�
a
b

�
=

2
4 d 1

2
1 0

0 d
1
2
2

3
5 � � x1

y1

�
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SROTMG and DROTMG construct the modified Givens plane rotation, d1, d2 and

H =

�
H11 H12
H21 H22

�

such that 2
4 d 1

2
1 0

0 d
1
2
2

3
5 �H � � x1

y1

�
= G �

�
a
b

�
=

�
r
0

�

where G is a 2 by 2 Givens plane rotation matrix which annihilates b, and where
H is chosen for numerical stability and computational efficiency.

The routine _ROTM applies the matrix H , as constructed by _ROTMG, to a pair
of real vectors, x and y, each with n elements, as follows:�

xi
yi

�
= H �

�
xi
yi

�

These vectors may be either rows or columns of matrices and the indexing of the
vectors may be either forwards or backwards.

Depending on the value of IPARAM(1), the matrix H is defined as follows:

• PARAM(1)= -1.0 �
H11 H12
H21 H22

�

• PARAM(1)= 0.0 �
1:0 H12
H21 1:0

�

• PARAM(1)= 1.0 �
H11 1:0
�1:0 H22

�

• PARAM(1)= -2.0 �
1:0 0:0
0:0 1:0

�

Note

The routines _ROTMG and _ROTM perform similar tasks to the routines
_ROTG and _ROT, which construct and apply the standard Givens plane
rotations. The modified Givens rotations reduce the operation count of
constructing and applying the rotations at the cost of increased storage to
represent the rotations.
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Example

See the example for SROTM.
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SSCAL DSCAL CSCAL ZSCAL, CSSCAL ZDSCAL
Product of a Scalar and a Vector

Format

{S,D,C,Z}SCAL (n, alpha, x, incx)

CSSCAL (n, alpha, x, incx)

ZDSCAL (n, alpha, x, incx)

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar value used to multiply the elements of vector x.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, if n�0 or � = 1:0, then x is unchanged. Otherwise, x is overwritten; xi is
replaced by �xi.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element in the array is scaled.
On exit, incx is unchanged.

Description

These routines perform the following operation:

x �x

SSCAL and DSCAL scale the elements of a real vector by computing the product
of the vector and a real scalar �x. CSCAL and ZSCAL scale the elements of a
complex vector by computing the product of the vector and a complex scalar �.
CSSCAL and ZDCAL scale the elements of a complex vector by computing the
product of the vector and a real scalar �.

If n�0 or � = 1.0, x is unchanged.

If incx < 0, the result is identical to using jincxj.
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If � = 0.0 or (0.0, 0.0), the computation is a time-consuming way of setting
all elements of the vector x equal to zero. Use the BLAS Level 1 Extensions
subroutines _SET to set all the elements of a vector to a scalar.

The _SCAL routines are similar to the BLAS Level 1 Extensions subroutines
_VCAL routines, but the _VCAL routines use an output vector different from the
input vector.

Example

INTEGER*4 INCX, N
COMPLEX*8 X(20), ALPHA
INCX = 1
ALPHA = (2.0, 1.0)
N = 20
CALL CSCAL(N,ALPHA,X,INCX)

This Fortran code shows how to scale a complex vector x by the complex scalar
(2.0, 1.0).
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SSWAP DSWAP CSWAP ZSWAP
Exchange the Elements of Two Vectors

Format

{S,D,C,Z}SWAP (n, x, incx, y, incy)

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, if n�0, x is unchanged. If n > 0, x is overwritten; the elements in the
array X that are the vector x are overwritten by the vector y.

incx
integer*4
On entry, the increment for the array X.
If incx � 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; the elements in the
array Y that are the vector y are overwritten by the vector x.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.

Description

These subroutines swap n elements of the vector x with n elements of vector y:

x$y

If any element of x shares a memory location with an element of y, the results
are unpredictable.

If n�0, x and y are unchanged.
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You can use these subroutines to invert the storage of elements of a vector within
itself. If incx > 0, each element xi is moved from location X(1 + (i � 1) � incx) to
location X(1 + (n � i) � incx). The following code fragment inverts the storage of
elements of a vector within itself:

NN = N/2
LHALF = 1+(N-NN)*INCX
CALL SSWAP(NN,X,INCX,X(LHALF),-INCX)

Example

INTEGER*4 INCX, INCY, N
REAL*4 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL SSWAP(N,X,INCX,Y,INCY)

The preceding Fortran code swaps the contents of vectors x and y.

INCX = 1
INCY = -1
N = 50
CALL SSWAP(N,X,INCX,X(51),INCY)

The preceding Fortran code inverts the order of storage of the elements of x
within itself; that is, it moves x1; . . . ; x100 to x100; . . . ; x1.
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Level I BLAS Extensions Subprograms

This section provides descriptions of the Level 1 BLAS Extensions subprograms,
combining real and complex versions of the subprograms.

A complex number has the form a + bi where a is a real number called the real
part, b is a real number called the imaginary part, and i =

p
minus > 1. The

vectors used in these subprograms represent a row or column of a matrix and can
be indexed either forward or backward.





ISAMIN IDAMIN ICAMIN IZAMIN

ISAMIN IDAMIN ICAMIN IZAMIN
Index of the Element of a Vector with Minimum Absolute Value

Format

I{S,D,C,Z}AMIN (n, x, incx)

Function Value

imin
integer*4

The index of the first element of the vector x such that X(1 + (imin� 1) � jincxj) is
the smallest in absolute value of all elements of the vector. If n�0, imin returns
the value 0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

These subprograms compute the index of the element of a vector having the
minimum absolute value. They determine the first integer i of the vector x such
that:

jxij = min
�jxj j; j = 1; 2; :::; n

	
For complex vectors, each element xj is a complex number. In this subprogram,
the absolute value of a complex number is defined as the absolute value of the
real part of the complex number plus the absolute value of the imaginary part of
the complex number:

jxj j = jaj j+ jbj j = jrealj+ jimaginaryj

If incx = 0, the computation is a time-consuming way of setting imin = 1.
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Example

INTEGER*4 N, INCX, IMIN, ISAMIN
REAL*4 X(40)
INCX = 2
N = 20
IMIN = ISAMIN(N,X,INCX)

This Fortran example shows how to compute the index of the vector element with
minimum absolute value.
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ISMAX IDMAX
Index of the Real Vector Element with Maximum Value

Format

I{S,D}MAX (n, x, incx)

Function Value

imax
integer*4

The index of the first element of the real vector x such that
X(1 + (imax� 1) � jincxj) is the largest of all elements of the vector.
If n�0, imax returns the value 0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the real vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

ISMAX and IDMAX determine the first integer i of vector x such that:

xi = max
�
xj ; j = 1; 2; :::; n

	
If incx = 0, the computation is a time-consuming way of setting imax = 1.

Example

INTEGER*4 N, INCX, IMAX, ISMAX
REAL*4 X(40)
INCX = 2
N = 20
IMAX = ISMAX(N,X,INCX)

This Fortran example shows how to compute the index of the vector element with
maximum value.
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ISMIN IDMIN
Index of the Real Vector Element with Minimum Value

Format

I{S,D}MIN (n, x, incx)

Function Value

imin
integer*4

The index of the first element of the real vector x such that
X(1 + (imin� 1) � jincxj) is the smallest of all elements in the vector. If n�0,
imin returns the value 0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the real vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

ISMIN and IDMIN determine the first integer i such that:

xi = min
�
xj ; j = 1; 2; :::; n

	
If incx = 0, the computation is a time-consuming way of setting imin = 1.

Example

INTEGER*4 N, INCX, IMIN, ISMIN
REAL*4 X(40)
INCX = 2
N = 20
IMIN = ISMIN(N,X,INCX)

This Fortran example shows how to compute the index of the vector element with
minimum value.
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SAMAX DAMAX SCAMAX DZAMAX
Maximum Absolute Value

Format

{S,D}AMAX (n, x, incx)

SCAMAX (n, x, incx)

DZAMAX (n, x, incx)

Function Value

amax
real*4 | real*8
The element of the vector with the largest absolute value. If n�0, amax returns
the value 0.0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

These functions determine the largest absolute value of the elements of a vector:

max
�jxj j; j = 1; 2; :::; n

	
For complex vectors, each element is a complex number. In this subprogram, the
absolute value of a complex number is defined as the absolute value of the real
part of the complex number plus the absolute value of the imaginary part of the
complex number:

jxj j = jaj j+ jbj j = jrealj+ jimaginaryj

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting amax = jx1j.

BLAS 1 Extensions Routines 6–53



SAMAX DAMAX SCAMAX DZAMAX

Example

REAL*4 SCAMAX, AMAX
INTEGER*4 N, INCX
COMPLEX*8 X(40)
INCX = 2
N = 20
AMAX = SCAMAX(N,X,INCX)

This Fortran example shows how to compute the element with the largest
absolute value.
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SAMIN DAMIN SCAMIN DZAMIN
Minimum Absolute Value

Format

{S,D}AMIN (n, x, incx)

SCAMIN (n, x, incx)

DZAMIN (n, x, incx)

Function Value

amin
real*4 | real*8
The element of the vector x with the smallest absolute value.
If n�0, amin = 0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

These functions determine the smallest absolute value of the elements of a vector
x:

max
�jxj j; j = 1; 2; :::; n

	
For complex vectors, each element xj is a complex number. In this subprogram,
the absolute value of a complex number is defined as the absolute value of the
real part of the complex number plus the absolute value of the imaginary part of
the complex number:

jxj j = jaj j+ jbj j = jrealj+ jimaginaryj

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting amin = jx1j.
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Example

INTEGER*4 N, INCX
REAL*4 X(400), AMIN, SAMIN
INCX = 3
N = 100
AMIN = SAMIN(N,X,INCX)

These Fortran examples show how to compute the element with the smallest
absolute value.
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SMAX DMAX
Largest Element in a Real Vector

Format

{S,D}MAX (n, x, incx)

Function Value

wmax
real*4 | real*8
The largest value among the elements of the real vector x.

If n�0, wmax = 0.

Arguments

n
integer*4
On entry, the number of elements in real vector x.
On exit, n is unchanged.

x
real*4 | real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of real vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

SMAX and DMAX are functions that determine the largest value among the real
elements of a vector x:

max
�
xj ; j = 1; 2; :::; n

	
If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting wmax = x1.

Example

INTEGER*4 N, INCX
REAL*4 X(40), WMAX, SMAX
INCX = 2
N = 20
WMAX = SMAX(N,X,INCX)

This Fortran example shows how to compute the largest value of the elements of
a vector x.
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SMIN DMIN
Minimum Value of the Elements of a Real Vector

Format

{S,D}MIN (n, x, incx)

Function Value

wmin
real*4 | real*8
The smallest value of the elements of the real vector x.
If n�0, wmin = 0.

Arguments

n
integer*4
On entry, the number of elements n in the vector x.
On exit, n is unchanged.

x
real*4 | real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj). X
contains the n elements of the real vector x.

On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

SMIN and DMIN are functions that determine the smallest value of the elements
of a vector x:

min
�
xj ; j = 1; 2; :::; n

	
If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting wmin = x1.

Example

INTEGER*4 N, INCX
REAL*4 X(40), WMIN, SMIN
INCX = 1
N = 30
WMIN = SMIN(N,X,INCX)

This Fortran example shows how to compute the smallest value of the elements
of a vector x.
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SNORM2 DNORM2 SCNORM2 DZNORM2
Square Root of Sum of the Squares of the Elements of a Vector

Format

{S,D}NORM2 (n, x, incx)

SCNORM2 (n, x, incx)

DZNORM2 (n, x, incx)

Function Value

sum
real*4 | real*8 | complex*8 | complex*16
The Euclidean norm of the vector x, that is, the square root of the sum of the
squares of the elements of a real vector or the square root of the sum of the
squares of the absolute value of the elements of the complex vector. If n�0,
sum = 0.0.

Arguments

n
integer*4
On entry, the number of elements of the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

SNORM2 and DNORM2 compute the Euclidean norm of a real vector x. The
Euclidean norm is the square root of the sum of the squares of the elements of
the vector: vuut nX

i=1

x2
i

SCNORM2 and DZNORM2 compute the square root of the sum of the squares of
the absolute value of the elements of a complex vector x:vuut nX

i=1

jxij2
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For complex vectors, each element xj is a complex number. In this subprogram,
the absolute value of a complex number is defined as the square root of the sum
of the squares of the real part and the imaginary part:

jxj j =
q
a2
j + b2

j =

q
real2 + imaginary2

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a

time-consuming way of setting sum =
q
nx2

1 for real operations, and sum = jxij
p
n

for complex operations.

Because of efficient coding, rounding errors can cause the final result to differ
from the result computed by a sequential evaluation of the Euclidean norm.

Unlike the _NRM2 and _ _NRM2 subprograms in BLAS Level 1, the _NORM2
and _ _NORM2 subprograms do not perform any special scaling to ensure that
intermediate results do not overflow or underflow. Therefore, these routines must
use an input vector x so that:

j
p
minj � jxij � j

p
maxj

The largest value of x must not overflow when it is squared; the smallest value
must not underflow when it is squared.

Example

INTEGER*4 N, INCX
REAL*4 X(20), SUM, SNORM2
INCX = 1
N = 20
SUM = SNORM2(N,X,INCX)

This Fortran example shows how to compute the Euclidean norm of the vector x.
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SNRSQ DNRSQ SCNRSQ DZNRSQ
Sum of the Squares of the Elements of a Vector

Format

{S,D}NRSQ (n, x, incx)

SCNRSQ (n, x, incx)

DZNRSQ (n, x, incx)

Function Value

sum
real*4 | real*8
The sum of the squares of the elements of the real vector x.
The sum of the squares of the absolute value of the elements of the complex
vector x.

If n�0, sum returns the value 0.0.

Arguments

n
integer*4
On entry, the number of elements of the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

SNRSQ and DNRSQ compute the sum of squares of the elements of a real vector.
SCNRSQ and DZNRSQ compute the sum of squares of the absolute value of the
elements of a complex vector.

SNRSQ and DNRSQ compute the total value of the square roots of each element
in the real vector x:

nX
j=1

x2
j
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SCNRSQ and DZNRSQ compute the total value of the square roots of each
element in the complex vector x, using the absolute value of each element:

nX
j=1

jxj j2

For complex vectors, each element xj is a complex number. In this subprogram,
the absolute value of a complex number is defined as the square root of the sum
of the square of the real part and the square of the imaginary part:

jxj j =
q
a2
j + b2

j =

q
real2 + imaginary2

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting sum = nx2

1.

Because of efficient coding, rounding errors can cause the final result to differ
from the result computed by a sequential evaluation of the sum of the squares
of the elements of the vector. Use these functions to obtain the square of the
Euclidean norm instead of squaring the result obtained from the Level 1 routines
SNRM2 and DNRM2. The computation is more accurate.

Example

INTEGER*4 N, INCX
REAL*4 X(20), SUM, SNRSQ
INCX = 1
N = 20
SUM = SNRSQ(N,X,INCX)

This Fortran example shows how to compute the sum of the squares of the
elements of the vector x.
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SSET DSET CSET ZSET
Set All Elements of a Vector to a Scalar

Format

{S,D,C,Z}SET (n, alpha, x, incx)

Arguments

n
integer*4
On entry, the number of elements in the vector.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar � value.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.

On exit, if n�0, x is unchanged. If n > 0, x is overwritten by the updated x.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

The _SET subroutines change all elements of a vector to the same scalar value;
each element xi is replaced with �.

xi �

If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting x1 = �.

Example

INTEGER*4 N, INCX
REAL*4 X(200), ALPHA
INCX = 2
ALPHA = 2.0
N = 50
CALL SSET(N,ALPHA,X,INCX)

This Fortran example shows how to set all elements of the vector x equal to 2.0.
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SSUM DSUM CSUM ZSUM
Sum of the Values of the Elements of a Vector

Format

{S,D,C,Z}SUM (n, x, incx)

Function Value

sum
real*4 | real*8 | complex*8 | complex*16
The total of the values of the elements in the vector x. If n�0, sum returns the
value 0.0.

Arguments

n
integer*4
On entry, the number of elements in the vector x.
On exit, n is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the n elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

Description

The _SUM subprograms compute the total value of the elements of a vector,
performing the following operation:

nX
i=1

xi

Because of efficient coding, rounding errors can cause the final result to differ
from the result computed by a sequential evaluation of the sum of the elements
of the vector.
If incx < 0, the result is identical to using jincxj. If incx = 0, the computation is a
time-consuming way of setting sum = nx1.
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Example

INTEGER*4 N, INCX
REAL*4 X(200), SUM, SSUM
INCX = 2
N = 50
SUM = SSUM(N,X,INCX)

This Fortran example shows how to compute the sum of the values of the
elements of the vector x.
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SVCAL DVCAL CVCAL ZVCAL CSVCAL, ZDVCAL
Product of a Scalar and a Vector

Format

{S,D,C,Z}VCAL (n, alpha, x, incx, y, incy)

CSVCAL (n, alpha, x, incx, y, incy)

ZDVCAL (n, alpha, x, incx, y, incy)

Arguments

n
integer*4
On entry, the number of elements of the vector x.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar multiplier �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; each element yi is
replaced by �xi.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy)
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.
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Description

SVCAL and DVCAL compute the product of a real scalar and a real vector, in
single or double precision. CVCAL and ZVCAL compute the product of a complex
scalar and a complex vector, in single or double precision. CSVCAL and ZDVCAL
compute the product of a real scalar and a complex vector in single or double
precision.

These subprograms multiply each element of a vector by a scalar value, returning
the result in vector y:

y �x

If incy = 0, the result is unpredictable. If incx = 0, each element in y is equal to
�X(1).

If � = 0, the computation is a time-consuming way of setting all elements of the
vector y equal to zero. Use the _SET routines to perform that operation.

EXAMPLES

1. INTEGER*4 N, INCX, INCY
REAL*4 X(20), Y(40), ALPHA
INCX = 1
INCY = 2
ALPHA = 2.0
N = 20
CALL SVCAL(N,ALPHA,X,INCX,Y,INCY)

This Fortran example shows how to scale a vector x by 2.0. Vector y is set
equal to the result.

2. INTEGER*4 N, INCX, INCY
COMPLEX*8 X(20), Y(40), ALPHA
INCX = 1
INCY = 2
ALPHA = (5.0, 1.0)
N = 20
CALL CVCAL(N,ALPHA,X,INCX,Y,INCY)

This Fortran example shows how to scale a vector x by the complex number
(5.0,1.0). Vector y is set equal to the result.
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SZAXPY DZAXPY CZAXPY ZZAXPY
Vector Plus the Product of a Scalar and a Vector

Format

{S,D,C,Z}ZAXPY (n, alpha, x, incx, y, incy, z, incz)

Arguments

n
integer*4
On entry, the number of elements of the vectors x and y.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar value to be multiplied with the elements of vector x.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the n elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
If incx > 0, vector x is stored forward in the array, so that xi is stored in location
X(1 + (i� 1) � incx).
If incx < 0, vector x is stored backward in the array, so that xi is stored in
location X(1 + (n� i) � jincxj).
If incx = 0, only the first element is accessed.
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj),
containing the n elements of the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the array Y.
If incy � 0, vector y is stored forward in the array, so that yi is stored in location
Y(1 + (i� 1) � incy).
If incy < 0, vector y is stored backward in the array, so that yi is stored in
location Y(1 + (n� i) � jincyj).
On exit, incy is unchanged.

z
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Z of length at least (1 + (n� 1) � jinczj).
On exit, if n�0, then z is unchanged. If n > 0, z is overwritten with the products;
each zi is replaced by yi + �xi.
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incz
integer*4
On entry, the increment for the array Z.
If incz � 0, vector z is stored forward in the array, so that zi is stored in location
Z(1 + (i� 1) � incz).
If incz < 0, vector z is stored backward in the array, so that zi is stored in
location Z(1 + (n� i) � jinczj).
On exit, incz is unchanged.

Description

The _ZAXPY subprograms compute the product of a scalar and a vector, add the
result to the elements of another vector, and then store the result in vector z:

z �x+ y

where � is a scalar, and x, y, and z are vectors with n elements.

The scalar � must not share a memory location with any element of the vector z.
If incz = 0 or if any element of z shares a memory location with an element of x
or y, the results are unpredictable.

If incx = 0, the computation is a time-consuming way of adding the constant �x1
to all the elements of y. The following chart shows the resulting operation from
the interaction of the incx and incy arguments:

incx = 0 incx 6= 0

incy = 0 zi = y1 + �x1 zi = y1 + �xi

incy 6= 0 zi = yi + �x1 zi = yi + �xi

Example

INTEGER*4 N, INCX, INCY, INCZ
REAL*4 X(20), Y(20), Z(40), ALPHA
INCX = 1
INCY = 1
INCZ = 2
ALPHA = 2.0
N = 20
CALL SZAXPY(N,ALPHA,X,INCX,Y,INCY,Z,INCZ)

This Fortran example shows how all elements of the vector x are multiplied by
2.0 and added to the elements of vector y. Vector z contains the result.
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7
Using the Sparse Level 1 BLAS Subprograms

The Sparse Level 1 BLAS subprograms perform vector-vector operations
commonly occuring in many computational problems in sparse linear algebra. In
contrast to the subprograms in Level 1 BLAS Subprograms and Level I BLAS
Extensions, these subprograms operate on sparse vectors. This chapter provides
information on the following topics:

• Operations performed by the Sparse Level 1 BLAS subprograms
(Section 7.1.1)

• Accuracy (Section 7.1.2)

• Sparse Level 1 vector storage (Section 7.2)

• Naming conventions (Section 7.3)

• Subprogram summary (Section 7.4)

• Calling Sparse Level 1 BLAS subprograms (Section 7.5)

• Argument conventions (Section 7.6)

• Error handling (Section 7.7)

• A look at a Sparse Level 1 BLAS subprogram (Section 7.8)

A description of each Sparse Level 1 BLAS subprogram follows this chapter.

7.1 Sparse Level 1 BLAS Operations
The Sparse Level 1 BLAS subprograms are sparse extensions of the Level 1 BLAS
subprograms. While similar in functionality to the Level 1 BLAS subprograms,
the sparse subprograms operate on sparse vectors stored in a compressed form.

DXML enhances the functionality of the Sparse Level 1 BLAS outlined in
[Dodson, Grimes, and Lewis 1991], by the addition of three subprograms that also
operate on sparse vectors.

7.1.1 Types of Operations
The sparse extensions of Level 1 BLAS subprograms that are of interest involve
two vectors. The standard approach in sparse vector computation is to expand
one vector into its full form and perform the numerical operations between that
uncompressed vector and the remaining compressed vector. The Sparse Level 1
BLAS subprograms can be classified into two types:

• A vector in uncompressed form is returned as output.
In order for these operations to give correct and consistent results on a vector
or parallel machine, the values in the index vector, associated with the vector
stored in compressed form, must be distinct.

• A scalar or a vector in compressed form is returned as output.
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7.1.2 Accuracy
Because of the efficient coding of the subprograms, in some cases, the results
obtained might not match the results obtained using the conventional order of
evaluation. Whenever this could happen, it is stated in the reference description
for that subprogram.

7.2 Sparse Vector Storage
For the Sparse Level 1 BLAS subprograms, a vector is stored in one of two ways:

• In a one-dimensional array in full form

• In two one-dimensional arrays in compressed form

7.2.1 Sparse Vectors
A sparse vector is a vector that has a relatively large number of zeros. In such
cases, substantial savings in computation and memory requirements can be
achieved by storing and operating on only the nonzero elements. For example,
consider the vector x, of length 9, as shown in the following example:

X =

2
666666666664

2:0
0:0
0:0
3:5
0:0
9:8
0:0
0:0
0:0

3
777777777775

Only three of the nine elements in this vector are nonzero and by storing just
these elements, the memory requirements for storing x can be reduced by a
factor of three. This transformation converts the original vector from its full
form to a vector in compressed form. Additional storage is, however, required
for storing information that enables the original vector to be reconstructed from
the vector stored in the compressed form. This implies that in addition to the
vector of nonzero elements and the number of nonzero elements, there should
be a companion array of indices that map the stored elements into their proper
places in the original vector. Thus, the vector x is stored in compressed form as
two separate arrays, XC and INDXC:

XC =

2
4 2:03:5
9:8

3
5

INDXC =

2
4 14
6

3
5

where XC is the array of nonzero elements and INDXC is an array of indices
that is used to reconstruct the original vector. For example, since the second
element in INDXC is 4, it implies that the second element in XC, 3.5, is the
fourth element in the original array X. Both XC and INDXC are of length nz = 3,
where nz is the number of nonzero elements in X.
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Operations on sparse vectors are performed only on the nonzero elements of the
vector. As a result, it is the number of nonzero elements that is important, not
the length of the original vector x. Moreover, as the elements of the vector stored
in compressed form are contiguous, there is no need for an increment parameter;
it is always 1.

7.2.2 Storing a Sparse Vector
Suppose X is a sparse one-dimensional array of length n, with nz nonzero
elements. As x is a sparse vector, nz is much smaller than n, that is, a large
number of elements of the vector x are zero.

Let XC be the vector x stored in compressed form, that is, XC contains only the
nonzero elements of x. Let INDXC be the array of indices that map each element
of XC into its proper position in the array X. Then X(INDXC(i)) = XC(i). It follows
that:

max(INDXC(i); i = 1; nz) � n

That is, if the original vector has length n, then the values of the elements in
array INDXC can be at most n.

A sparse vector, stored in a compressed form, is thus defined by three quantities:

• Number of nonzero elements: nz

• Array of length at least nz, containing the nonzero elements of array X: XC

• Array of length at least nz containing the indices of the nonzero elements in
the original uncompressed form: INDXC

7.3 Naming Conventions
Table 7–1 shows the characters used in the names of the Sparse Level 1 BLAS,
and their meaning.

Table 7–1 Naming Conventions: Sparse Level 1 BLAS Subprogram

Character
Group Mnemonic Meaning

First group S Single-precision real

D Double-precision real

C Single-precision complex

Z Double-precision complex

Second group A combination of letters
such as DOT or SCTR

Type of computation such as dot product or
a vector scatter

Third group I Refers to indexed computation used in
sparse vectors

S or Z Scale or zero

No mnemonic -

For example, the name SSCTRS refers to the single precision real subprogram for
scaling and then scattering the elements of a sparse vector stored in compressed
form.
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7.4 Summary of Sparse Level 1 BLAS Subprograms
Table 7–2 summarizes the Sparse Level 1 BLAS subprograms provided by
DXML.

Table 7–2 Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SAXPYI Calculates, in single-precision arithmetic, the product of a real scalar
and a real sparse vector in compressed form and adds the result to a
real vector in full form.

DAXPYI Calculates, in double-precision arithmetic, the product of a real scalar
and a real sparse vector in compressed form and adds the result to a
real vector in full form.

CAXPYI Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex sparse vector in compressed form and adds the
result to a complex vector in full form.

ZAXPYI Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex sparse vector in compressed form and adds the
result to a complex vector in full form.

SSUMI Calculates, in single-precision arithmetic, the sum of a real sparse
vector stored in compressed form and a real vector stored in full form.

DSUMI Calculates, in double-precision arithmetic, the sum of a real sparse
vector stored in compressed form and a real vector stored in full form.

CSUMI Calculates, in single-precision arithmetic, the sum of a complex sparse
vector stored in compressed form and a complex vector stored in full
form.

ZSUMI Calculates, in double-precision arithmetic, the sum of a complex sparse
vector stored in compressed form and a complex vector stored in full
form.

SDOTI Calculates, in single-precision arithmetic, the product of a real vector
and a real sparse vector stored in compressed form.

DDOTI Calculates, in double-precision arithmetic, the product of a real vector
and a real sparse vector stored in compressed form.

CDOTUI Calculates, in single-precision arithmetic, the product of a complex
vector and an unconjugated complex sparse vector stored in compressed
form.

ZDOTUI Calculates, in double-precision arithmetic, the product of a complex
vector and an unconjugated complex sparse vector stored in compressed
form.

CDOTCI Calculates, in single-precision arithmetic, the product of a complex
vector and a conjugated complex sparse vector stored in compressed
form.

ZDOTCI Calculates, in double-precision arithmetic, the product of a complex
vector and a conjugated complex sparse vector stored in compressed
form.

(continued on next page)
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Table 7–2 (Cont.) Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SGTHR Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form.

DGTHR Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form.

CGTHR Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form.

ZGTHR Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form.

SGTHRS Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified scaled elements of a real vector in
full form.

DGTHRS Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified scaled elements of a real vector in
full form.

CGTHRS Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified scaled elements of a complex vector
in full form.

ZGTHRS Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified scaled elements of a complex vector
in full form.

SGTHRZ Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form and sets the elements to zero.

DGTHRZ Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form and sets the elements to zero.

CGTHRZ Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form and sets the elements to zero.

ZGTHRZ Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form and sets the elements to zero.

SROTI Applies, in single-precision arithmetic, a Givens rotation for a real
sparse vector stored in compressed form and another vector stored in
full form.

DROTI Applies, in double-precision arithmetic, a Givens rotation for a real
sparse vector stored in compressed form and another vector stored in
full form.

(continued on next page)
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Table 7–2 (Cont.) Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SSCTR Scatters, in single-precision arithmetic, the components of a sparse real
vector in compressed form into the specified components of a real vector
in full form.

DSCTR Scatters, in double-precision arithmetic, the components of a sparse
real vector in compressed form into the specified elements a real vector
in full form.

CSCTR Scatters, in single-precision arithmetic, the components of a sparse
complex vector in compressed form into the specified elements of a
complex vector in full form.

ZSCTR Scatters, in double-precision arithmetic, the components of a sparse
complex vector in compressed form into the specified elements of a
complex vector in full form.

SSCTRS Scales and then scatters, in single-precision arithmetic, the components
of a sparse real vector in compressed form into the specified
components of a real vector in full form.

DSCTRS Scales and then scatters, in double-precision arithmetic, the
components of a sparse real vector in compressed form into the
specified elements a real vector in full form.

CSCTRS Scales and then scatters, in single-precision arithmetic, the components
of a sparse complex vector in compressed form into the specified
elements of a complex vector in full form.

ZSCTRS Scales and then scatters, in double-precision arithmetic, the
components of a sparse complex vector in compressed form into the
specified elements of a complex vector in full form.

7.5 Calling Subprograms
Some of the subprograms return a scalar. These subprograms are functions and
are called as functions by coding a function reference.

In the reference section at the end of this chapter, a reference description for a
function includes a Function Value section. For all the subprograms that are
functions, all of the arguments are input arguments, which are unchanged on
exit. The example at the end of each function reference description shows the
function call.

Some of the subprograms return a vector. These subprograms are subroutines
and are called as subroutines with a CALL statement.

A reference description for a subroutine does not have a Function Value section.
Each subroutine has an output argument that is overwritten on exit and contains
the output vector information. The example at the end of each subroutine
reference description shows the subroutine call.
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7.6 Argument Conventions
Each Sparse Level 1 BLAS subprogram has arguments that specify the nature
and requirements of the subprogram. There are no optional arguments.

The arguments are ordered by category, but not every argument category is
needed in each of the subprograms:

• Argument defining the number of nonzero elements

• Argument defining the input scalar

• Arguments describing the input and output vectors

7.6.1 Defining the Number of Nonzero Elements
The Sparse Level 1 BLAS subprograms operate only on the nonzero elements of
the sparse vector. Thus in contrast to the Level 1 BLAS subprograms, it is the
number of nonzero elements that is input to the subprogram, not the length of
the vector. The number of nonzero elements is defined by the argument nz.

The values nz< 0, nz = 0 and nz > 0 are all allowed. For nz� 0, the routines
return zero function values (if applicable) and make no references to their vector
arguments.

7.6.2 Defining the Input Scalar
The input scalar � is always defined by the argument alpha.

7.6.3 Describing the Input/Output Vectors
Sparse Level 1 BLAS subprograms operate on two types of vectors: compressed
and uncompressed. The elements of the full uncompressed vector y, specified by
the argument y are stored contiguously, that is, with increment equal to 1. As
a result, there is no input parameter for the increment of the vector y as it is
always assumed to be 1.

The sparse vector x is stored in compressed form as array X, containing nz
elements. The companion array of indices, array INDX, also of length nz,
replaces the increment argument of the Level 1 BLAS subprograms.

7.7 Error Handling
The Sparse Level 1 BLAS subprograms assume that input parameters are correct
and provide no feedback when problems occur. You must ensure that all input
data for these subprograms is correct.

7.8 A Look at a Sparse Level 1 BLAS Subprogram
To understand the differences between a Level 1 BLAS subprogram and its sparse
counterpart, consider the routines SAXPY and SAXPYI. They perform essentially
the same operation, but SAXPY operates on full vectors and SAXPYI operates on
sparse vectors.
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Consider two arrays: array Y of length n = 9, stored in full uncompressed form
and the sparse array X, also of length n = 9 and also stored in full form.

Y =

2
666666666664

1:0
2:0
3:0
4:0
5:0
6:0
7:0
8:0
9:0

3
777777777775

X =

2
666666666664

2:0
0:0
1:0
0:0
0:0
3:0
0:0
0:0
0:0

3
777777777775

As the array X is sparse, it can be stored in the compressed form as an array XC
of length 3 and a companion integer array INDXC, also of length 3.

XC =

2
4 2:01:0
3:0

3
5 INDXC =

2
4 13
6

3
5

The routine SAXPY, from Level 1 BLAS, operates on the arrays X and Y as shown
in the following code:

REAL*4 X(9), Y(9), ALPHA
INTEGER INCX, INCY, N
ALPHA = 2.0
INCX = 1
INCY = 1
N = 9
CALL SAXPY(N,ALPHA,X,INCX,Y,INCY)

The routine SAXPYI, from Sparse Level 1 BLAS, operates on the arrays XC and
Y as shown in the following code:

REAL*4 XC(3), Y(9), ALPHA
INTEGER INDXC(3), NZ
ALPHA = 2.0
NZ = 3
CALL SAXPYI(NZ,ALPHA,XC,INDXC,Y)

With � = 2.0, both calls result in the updated vector y:

Y =

2
666666666664

5:0
2:0
5:0
4:0
5:0
12:0
7:0
8:0
9:0

3
777777777775
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In SAXPY, all the elements of the array X and Y are operated on, resulting in
18 arithmetic operations (additions and multiplications). In contrast, SAXPYI
operates only on the nonzero elements, resulting in 6 arithmetic operations.
Storing both the vectors in uncompressed form requires 18 memory locations
for real operands. Storing array X in a compressed form and array Y in an
uncompressed form requires 12 memory locations for real operands and 3 for
integer operands.

The savings in compute time and memory requirements can be substantial, when
the array X is very sparse.
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Sparse Level 1 BLAS Subprograms

This section provides descriptions of the Sparse Level 1 BLAS subprograms.





SAXPYI DAXPYI CAXPYI ZAXPYI

SAXPYI DAXPYI CAXPYI ZAXPYI
Vector Plus the Product of a Scalar and a Sparse Vector

Format

{S,D,C,Z}AXPYI ( nz, alpha, x, indx, y )

Arguments

nz
integer*4
On entry, the number of elements in the vector in the compressed form.
On exit, nz is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar multiplier for the elements of vector x.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector x in compressed form.
On exit, x is unchanged.

indx
integer*4
On entry, an array containing the indices of the compressed form. The values in
the INDX array must be distinct for consistent vector or parallel execution.
On exit, indx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, if nz�0 or if � = 0, y is unchanged. If nz > 0, the elements in the vector
y corresponding to the indices in the INDX array are overwritten.

Description

The _AXPYI subprograms compute the product of a scalar � and a sparse vector
x stored in compressed form. The product is then added to a vector y and the
result is stored as an updated vector y in full form. Only the elements of vector y
whose indices are listed in INDX are updated. For i = 1; :::; nz:

y(indx(i)) �y(indx(i)) + � � x(i)

If nz�0 or � = 0:0, y is unchanged. SAXPYI and DAXPYI compute the product
of a real scalar and a real sparse vector stored in compressed form, and add the
product to a real vector in full form. CAXPYI and ZAXPYI compute the product
of a complex scalar and a complex sparse vector stored in compressed form, and
add the product to a complex vector stored in full form.

Sparse BLAS 1 Routines 7–13



SAXPYI DAXPYI CAXPYI ZAXPYI

Example

INTEGER NZ, INDX(10)
REAL*4 Y(40), X(10), ALPHA
NZ = 10
ALPHA = 2.0
CALL SAXPYI(NZ, ALPHA, X, INDX, Y)

This Fortran code shows how the nz elements in y, corresponding to the indices
in the INDX array, are updated by the addition of a scalar multiple of the
corresponding element of the compressed vector, x.
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SDOTI DDOTI CDOTUI ZDOTUI CDOTCI ZDOTCI

SDOTI DDOTI CDOTUI ZDOTUI CDOTCI ZDOTCI
Inner Product of a Vector and a Sparse Vector

Format

{S,D}DOTI ( nz, x, indx, y )

{C,Z}DOT{U,C}I ( nz, x, indx, y )

Function Value

dotpr
real*4 | real*8 | complex*8 | complex*16
The inner product of the sparse vector x and the full vector y.

Arguments

nz
integer*4
On entry, the number of elements in the vector in the compressed form.
On exit, nz is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector x in compressed form.
On exit, x is unchanged.

indx
integer*4
On entry, an array containing the indices of the compressed form.
On exit, indx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, y is unchanged. Only the elements in the vector y corresponding to the
indices in the INDX array are accessed.

Description

These routines compute the vector inner product of a sparse vector x stored in
compressed form with a vector y stored in full form. If nz�0, dotpr is set equal
to zero.

SDOTI and DDOTI multiply a real vector by a sparse vector of real values
stored in compressed form. CDOTUI and ZDOTUI multiply a complex vector
by an unconjugated sparse vector of complex values stored in compressed form.
CDOTCI and ZDOTCI multiply a complex vector by a conjugated sparse vector of
complex values stored in compressed form.

As shown in (7–1) and (7–2), CDOTUI and ZDOTUI operate on the vector x in the
unconjugated form; CDOTCI and ZDOTCI operate on the vector x in conjugated
form.

Unconjugated form : dotpr =
nzX
i=1

x(i) � y(indx(i)) (7–1)
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SDOTI DDOTI CDOTUI ZDOTUI CDOTCI ZDOTCI

Conjugated form : dotpr =
nzX
i=1

x(i) � y(indx(i)) (7–2)

The order of operations for the evaluation of dotpr may be different fom the
sequential order of operations. The results obtained from these two evaluations
may not be identical.

Example

INTEGER NZ, INDX(15)
COMPLEX*8 Y(50), X(15)
NZ = 10
CINNER = CDOTUI(NZ, X, INDX, Y)

This Fortran code produces the inner product of two vectors, x and y. Vector y
is stored in full form and vector x is stored in compressed form. The elements of
vector x are used in unconjugated form.
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SGTHR DGTHR CGTHR ZGTHR

SGTHR DGTHR CGTHR ZGTHR
Gathers the Specified Elements of a Vector

Format

{S,D,C,Z}GTHR ( nz, y, x, indx )

Arguments

nz
integer*4
On entry, the number of elements to be gathered into the compressed form.
On exit, nz is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, y is unchanged. Only the elements in the vector y corresponding to the
indices in the INDX array are accessed.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array that receives the specified elements of the vector y.
On exit, if nz�0, x is unchanged. If nz > 0, array X contains the values gathered
into compressed form.

indx
integer*4
On entry, an array containing the indices of the values to be gathered into
compressed form.
On exit, indx is unchanged.

Description

The _GTHR subprograms gather specified elements from a vector in full form, y,
and store them as a vector x in compressed form. For i = 1; :::; nz:

x(i) �y(indx(i))

If nz�0, x is unchanged.

SGTHR and DGTHR gather the specified elements from a real vector in full form
and store them as a real sparse vector in compressed form. CGTHR and ZGTHR
gather the specified elements from a complex vector in full form and store them
as a complex sparse vector in compressed form.

Example

INTEGER NZ, INDX(10)
REAL*4 Y(40), X(10)
NZ = 10
CALL SGTHR(NZ, Y, X, INDX)

This Fortran code shows how the nz elements of the vector y, corresponding to
the indices in the INDX array, are gathered in a compressed form into the vector
x.
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SGTHRS DGTHRS CGTHRS ZGTHRS

SGTHRS DGTHRS CGTHRS ZGTHRS
Gathers and Scales the Specified Elements of a Vector

Format

{S,D,C,Z}GTHRS ( nz, alpha, y, x, indx )

Arguments

nz
integer*4
On entry, the number of elements to be gathered into the compressed form.
On exit, nz is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar multiplier for the elements of vector y.
On exit, alpha is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, y is unchanged. Only the elements in the vector y corresponding to the
indices in the INDX array are accessed.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array that receives the specified elements of vector y after scaling.
On exit, if nz�0, x is unchanged. If nz > 0, the array X contains the specified
elements of vector y after scaling by the scalar, �.

indx
integer*4
On entry, an array containing the indices of the values to be gathered into
compressed form.
On exit, indx is unchanged.

Description

The _GTHRS subprograms gather specified elements of vector y in full form,
multiply the elements by �, and store the result as elements of a sparse vector x
in compressed form. For i = 1; :::; nz:

x(i) �� � y(indx(i))

If nz�0, x is unchanged.

SGTHRS and DGTHRS gather the elements from a real vector in full storage
and scale them into a real vector in compressed storage. CGTHRS and ZGTHRS
gather the specified elements from a complex vector in full storage and scale them
into a complex vector in compressed storage.

The _GTHRS subprograms are not part of the original set of Sparse BLAS Level
1 subprograms.
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SGTHRS DGTHRS CGTHRS ZGTHRS

Example

INTEGER NZ, INDX(10)
REAL*8 Y(40), X(10), ALPHA
NZ = 10
ALPHA = 1.5D0
CALL DGTHRS(NZ, ALPHA, Y, X, INDX)

This Fortran code shows how the nz elements of the vector y, corresponding to
the indices in the INDX array, are scaled by the scalar alpha and gathered in a
compressed form into the vector x.
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SGTHRZ DGTHRZ CGTHRZ ZGTHRZ

SGTHRZ DGTHRZ CGTHRZ ZGTHRZ
Gathers and Zeros Specified Elements of a Vector

Format

{S,D,C,Z}GTHRZ ( nz, y, x, indx )

Arguments

nz
integer*4
On entry, the number of elements to be gathered into the compressed form.
On exit, nz is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, if nz�0, y is unchanged. If nz > 0, the gathered elements in Y are set to
zero. Only the elements in the vector y corresponding to the indices in the INDX
array are overwritten.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array that receives the specified elements of vector y.
On exit, if nz�0 x is unchanged. If nz > 0, the array X contains the values
gathered into compressed form.

indx
integer*4
On entry, an array containing the indices of the values to be gathered into
compressed form. The values in INDX must be distinct for consistent vector or
parallel execution.
On exit, indx is unchanged.

Description

The _GTHRZ subprograms gather the specified elements from a vector y stored in
full form into a sparse vector x in compressed form. Those elements in y are then
set to zero. For i = 1; :::; nz:

x(i) �y(indx(i))
y(indx(i)) �0:0

If nz�0, both x and y are unchanged. SGTHRZ and DGTHRZ gather the specified
elements of a real vector in full form into a real sparse vector in compressed form.
CGTHRZ and ZGTHRZ gather the specified elements of a complex vector in full
form into a complex sparse vector in compressed form. In each case, the specified
elements of the full vector are set equal to zero.
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SGTHRZ DGTHRZ CGTHRZ ZGTHRZ

Example

INTEGER NZ, INDX(10)
REAL*4 Y(40), X(10)
NZ = 10
CALL SGTHRZ(NZ, Y, X, INDX)

This Fortran code shows how the nz elements of the vector y, corresponding to
the indices in the INDX array, are gathered in a compressed form into the vector
x. The gathered elements in y are set equal to zero.
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SROTI DROTI

SROTI DROTI
Real Givens Plane Rotation Applied to Sparse Vector

Format

{S,D}ROTI ( nz, x, indx, y, c, s )

Arguments

nz
integer*4
On entry, the number of elements in the vector in the compressed form.
On exit, nz is unchanged.

x
real*4 | real*8
On entry, an array of the elements of vector x in compressed form.
On exit, if nz�0, x is unchanged. If nz > 0, the array X is updated.

indx
integer*4
On entry, an array containing the indices of the compressed form. The values in
INDX must be distinct for consistent vector or parallel execution.
On exit, indx is unchanged.

y
real*4 | real*8
On entry, an array of the elements of vector y stored in full form.
On exit, if nz�0, y is unchanged. If nz > 0, the elements in the vector y
corresponding to the indices in the INDX array are overwritten.

c
real*4 | real*8
On entry, c is the first rotation element, which can be interpreted as the cosine of
the angle of rotation.
On exit, c is unchanged.

s
real*4 | real*8
On entry, s is the second rotation element, which can be interpreted as the sine of
the angle of rotation.
On exit, s is unchanged.

Description

The _ROTI routines apply a real Givens rotation to a sparse vector x stored in
compressed form and another vector y stored in full form. For i = 1; :::; nz:

temp �� s � x(i) + c � y(indx(i))

x(i) �c � x(i) + s � y(indx(i))
y(indx(i)) �temp

If nz�0, x and y are unchanged. Only the elements of y whose indices are listed
in INDX are referenced or modified.
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SROTI DROTI

The output vectors x and y have nonzero elements in the locations where either
input vector x or y had nonzero elements. Because the _ROTI subprograms do
not handle this fill-in, the arrays X and INDX must take this into account on
input. This means that all nonzero elements of y must be listed in the array
INDX, resulting in an INDX array containing the indices of all nonzero elements
of both vectors x and y.

Example

INTEGER NZ, INDX(10)
REAL*8 Y(40), X(10), C, S
NZ = 10
CALL DROTI(NZ, X, INDX, Y, C, S)

This Fortran code shows how to apply a Givens rotation to a sparse vector x,
stored in compressed form, and another vector y, stored in full form.
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SSCTR DSCTR CSCTR ZSCTR

SSCTR DSCTR CSCTR ZSCTR
Scatters the Elements of a Sparse Vector

Format

{S,D,C,Z}SCTR ( nz, x, indx, y )

Arguments

nz
integer*4
On entry, the number of elements to be scattered from the compressed form.
On exit, nz is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector x to be scattered from compressed
form into full form.
On exit, x is unchanged.

indx
integer*4
On entry, an array containing the indices of the values to be scattered from the
compressed form. The values in the INDX array must be distinct for consistent
vector or parallel execution.
On exit, indx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array that receives the elements of vector x.
On exit, if nz�0, y is unchanged. If nz > 0, the elements in the vector y
corresponding to the indices in the INDX array are set to the corresponding
elements in vector x.

Description

The _SCTR routines scatter the elements stored in the sparse vector x in
compressed form into the specified elements of the vector y in full form. For
i = 1; :::; nz:

y(indx(i)) �x(i)

If nz�0, y is unchanged. SSCTR and DSCTR scatter the elements of a real sparse
vector stored in compressed form into the specified elements of a real vector in
full form. CSCTR and ZSCTR scatter the elements of a complex sparse vector
stored in compressed form into the specified elements of a complex vector in full
form.

Example

INTEGER NZ, INDX(10)
REAL*4 Y(40), X(10)
NZ = 10
CALL SSCTR(NZ, X, INDX, Y)

This Fortran code scatters the elements of a sparse vector x, stored in compressed
form, into the specified elements of the vector y, stored in full form.
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SSCTRS DSCTRS CSCTRS ZSCTRS

SSCTRS DSCTRS CSCTRS ZSCTRS
Scales and Scatters the Elements of a Sparse Vector

Format

{S,D,C,Z}SCTRS ( nz, alpha, x, indx, y )

Arguments

nz
integer*4
On entry, the number of elements to be scattered from the compressed form.
On exit, nz is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar multiplier for the elements of vector x.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector x to be scattered from compressed
form into full form.
On exit, x is unchanged.

indx
integer*4
On entry, an array containing the indices of the values to be scattered from the
compressed form. The values in INDX must be distinct for consistent vector or
parallel execution.
On exit, indx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array that receives the scaled elements of the vector x.
On exit, if nz�0, y is unchanged. If nz > 0, the elements in the vector y
corresponding to the indices in the INDX array are set to the corresponding
scaled entries of x.

Description

The _SCTRS subprograms multiply the elements of a sparse vector x stored in
compressed form by a scalar � and then scatter them into the specified elements
of the vector y stored in full form. For i = 1; :::; nz:

y(indx(i)) �� � x(i)

If nz�0, y is unchanged.

SSCTRS and DSCTRS scatter the elements of a real sparse vector stored in
compressed form, after scaling, into the specified elements of a real vector stored
in full form. CSCTRS and ZSCTRS scatter the elements of a complex sparse
vector stored in compressed form, after scaling, into the specified elements of a
complex vector stored in full form.

The _SCTRS subprograms are not part of the original set of Sparse BLAS Level 1
subprograms.
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Example

INTEGER NZ, INDX(10)
REAL*8 Y(40), X(10), ALPHA
NZ = 10
ALPHA = 2.5D0
CALL DSCTRS(NZ, ALPHA, X, INDX, Y)

This Fortran code scales the elements of a sparse vector x, stored in compressed
form, by the scalar alpha, and then scatters them into the specified elements of
the vector y, stored in full form.
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SSUMI DSUMI CSUMI ZSUMI

SSUMI DSUMI CSUMI ZSUMI
Sum of a Vector and a Sparse Vector

Format

{S,D,C,Z}SUMI ( nz, x, indx, y )

Arguments

nz
integer*4
On entry, the number of elements in the vector in the compressed form.
On exit, nz is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector x in compressed form.
On exit, x is unchanged.

indx
integer*4
On entry, an array containing the indices of the compressed form. The values in
the INDX array must be distinct for consistent vector or parallel execution.
On exit, indx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array of the elements of vector y stored in full form.
On exit, if nz�0, y is unchanged. If nz > 0, the elements in the vector y
corresponding to the indices in the INDX array are overwritten.

Description

SSUMI and DSUMI add a sparse vector of real values stored in compressed form
to a real vector stored in full form. CSUMI and ZSUMI add a sparse vector of
complex values stored in compressed form to a complex vector stored in full form.

Only the elements of vector y whose indices are listed in array INDX are
overwritten. For i = 1; :::; nz:

y(indx(i)) �y(indx(i)) + x(i)

If nz�0, y is unchanged. The _SUMI subprograms are an efficient
implementation of the _AXPYI subprograms when � = 1.0.

The _SUMI subprograms are not part of the original set of Sparse BLAS Level 1
subprograms.
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SSUMI DSUMI CSUMI ZSUMI

Example

INTEGER NZ, INDX(20)
REAL*8 Y(100), X(20)
NZ = 20
CALL DSUMI(NZ, X, INDX, Y)

This Fortran code shows how the nz elements in y, corresponding to the indices
in the array INDX, are updated by the addition of the corresponding element of
the compressed vector, x.
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8
Using the Level 2 BLAS Subprograms

The Level 2 BLAS subprograms perform matrix-vector operations commonly
occurring in many computational problems in linear algebra. This chapter
provides information about the following topics:

• Operations performed by the Level 2 BLAS subprograms (Section 8.1)

• Vector and matrix storage (Section 8.2)

• Subprogram naming conventions (Section 8.3)

• Subprogram summary (Section 8.4)

• Calling Level 2 BLAS subprograms (Section 8.5)

• Arguments used in the subprograms and invalid arguments
(Sections 8.6 and 8.6.6)

• Performing rank-one and rank-two updates to band matrices (Section 8.7)

• Error handling (Section 8.8)

• A look at a Level 2 subprogram and its use (Section 8.9)

The reference descriptions of the Level 2 BLAS subprograms are at the end of
this chapter.

A key Level 2 BLAS subprogram, {C,D,S,Z}GEMV, has been parallelized for
improved peformance on multiprocessor systems. For information about using
the parallel library, see Chapter 4.

8.1 Level 2 BLAS Operations
Level 2 BLAS subprograms perform operations that involve only one matrix.

8.1.1 Types of Operations
The subprograms perform three types of basic matrix-vector operations:

• Matrix-vector products
y  �Ax+ �y

y  �AT x+ �y

y  �AHx+ �y

x  Tx

x  TT x
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• Rank-one and rank-two updates

A  A+ �xyT

A  A+ �xyH

A  A+ �xyT + �yxT

A  A+ �xyH + �yxH

• Triangular system solvers
Tx = b

TT x = b

THx = b

� and � are scalars, x, y, and b are vectors, A is a matrix, and T is an upper- or
lower-triangular matrix. For the triangular system solvers, T must also be non-
singular; that is, det(T ) is not equal to zero. Where appropriate, these operations
are applied to different types of matrices:

• General matrix

• General band matrix

• Symmetric matrix

• Symmetric band matrix

• Hermitian matrix

• Hermitian band matrix

• Triangular matrix

• Triangular band matrix

Sixteen real subprograms perform 67 different operations, and 17 complex
subprograms perform 68 different operations in both single-precision and double-
precision arithmetic.

8.2 Vector and Matrix Storage
Level 2 BLAS subprograms store a vector in a one-dimensional array. (See
Section 6.2.)

The matrix A is stored in one of two ways:

• A is stored in a two-dimensional array.

• A is stored in packed form in a one-dimensional array.
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8.2.1 Defining a Matrix in an Array
A matrix is usually stored in a two-dimensional array. When every element of a
matrix is stored, the storage scheme is called full matrix storage. If the matrix
itself is a special kind of matrix such as a triangular matrix or a band matrix, a
large number of storage locations are wasted using full matrix storage, and other
storage methods can be used.

If a matrix is complex, each matrix element has the form a+ bi. For each complex
element, two storage locations in succession are needed to store a and b. Storing
a complex matrix requires twice the number of storage locations as storing a real
matrix of the same precision.

The columns of the matrix are stored one after the other in the array. The array
can be much larger than the matrix that is stored in the array.

The storage of a matrix is defined using four arguments in a DXML subprogram
argument list:

• Matrix location: Base address of the matrix in the array. It also tells where
processing begins.

• The first, or leading, dimension of the array: Space, or increment, between
consecutive elements of a row in an array.

• The number of rows m of the matrix.

• The number of columns n of the matrix.

These four quantities together specify which elements of an array are selected to
become the matrix.

8.2.1.1 Matrix Location
The location given by the matrix argument in a DXML subroutine argument list
is the starting point for selecting matrix elements. For example, consider the
array A declared as A(5,7).

A =

2
6664
1:0 6:0 11:0 16:0 21:0 26:0 31:0
2:0 7:0 12:0 17:0 22:0 27:0 32:0
3:0 8:0 13:0 18:0 23:0 28:0 33:0
4:0 9:0 14:0 19:0 24:0 29:0 34:0
5:0 10:0 15:0 20:0 25:0 30:0 35:0

3
7775 (8–1)

If you specify A(2,3) as the starting point for the selection of matrix elements,
then processing begins at the element in row 2 and column 3, which is the
element 12.0.

8.2.1.2 First Dimension of the Array
The first (or leading) dimension of an array, which is specified by an argument
such as lda in the DXML subprogram argument list, is the number of rows in
the array from which the matrix elements are being selected. The first dimension
of the array is used as an increment to select matrix elements from successive
columns of the array.

The first dimension must be greater than or equal to m, the number of rows of the
matrix. If the first dimension were less than m, then elements from one column
of a matrix would be stored in more than one column of the array. This storage
mechanism would lead to access of incorrect elements.
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For the array A shown in (8–1), the first dimension is 5. More generally, for
an array A declared as A(FL:FU,SL:SU), the first dimension of the array is as
follows:

FU� FL + 1

8.2.1.3 Number of Rows and Columns of the Matrix
You specify the number of rows m of the matrix and the number of columns n
of the matrix by specifying an integer value for the row and column arguments,
such as m and n.

You can think about the matrix as the number of rows and columns of the array
that you want to process. After processing the first element, the subprogram
continues until m elements in n columns have been processed.

8.2.1.4 Selecting Matrix Elements from an Array
Again, consider the array A declared as A(5,7), with A(2,3) specified as the
location of the matrix, which is also the starting point for the selection of matrix
elements.

A =

2
6664
1:0 6:0 11:0 16:0 21:0 26:0 31:0
2:0 7:0 12:0 17:0 22:0 27:0 32:0
3:0 8:0 13:0 18:0 23:0 28:0 33:0
4:0 9:0 14:0 19:0 24:0 29:0 34:0
5:0 10:0 15:0 20:0 25:0 30:0 35:0

3
7775 (8–2)

Processing begins at element 12.0. If the number of rows m to be processed
is 3, and the number of columns n to be processed is 4, DXML adds the value
of the first dimension of the array, which is 5, to find the starting point in the
next column, which is element 17.0. DXML continues this until the number of
columns processed is 4. The starting points of the columns are elements 12.0,
17.0, 22.0, and 27.0. Then, to find the matrix elements in each column of A,
DXML repeatedly adds the value 1 to the starting point in a column until 3
elements in each column have been processed. The matrix elements selected in
this example specify the matrix A shown in (8–3):

A =

2
4 12:0 17:0 22:0 27:0
13:0 18:0 23:0 28:0
14:0 19:0 24:0 29:0

3
5 (8–3)

The matrix does not have elements from all the rows and columns of the array.
No elements are selected from rows 1 or 5 or from columns 1, 2, or 7. However,
the matrix formed is a rectangular block in the array.

8.2.2 Symmetric and Hermitian Matrices
A matrix is symmetric if it is equal to its transpose:

A = AT

Symmetric matrix A has the following properties:

• A has the same number of rows as columns; symmetric matrices are square.

• aij = aj i for all i and j . Each element of A on one side of the diagonal equals
its mirror on the other side of the diagonal.

A complex matrix is Hermitian if it is equal to its conjugate transpose:

A = AH
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A Hermitian matrix has the same number of rows as columns; Hermitian
matrices are square. However, in general, a Hermitian matrix is not symmetric,
as shown by looking at a complex Hermitian matrix B of order 3, its transpose
BT and its conjugate transpose BH : B = BH , but B 6= BT :

B =

2
4 (2; 0) (8;�9) (27; 26)

(8; 9) (12; 0) (1;�7)
(27;�26) (1; 7) (�3; 0)

3
5

BT =

2
4 (2; 0) (8; 9) (27;�26)
(8;�9) (12; 0) (1; 7)
(27; 26) (1;�7) (�3; 0)

3
5

BH =

2
4 (2; 0) (8;�9) (27; 26)

(8; 9) (12; 0) (1;�7)
(27;�26) (1; 7) (�3; 0)

3
5

The imaginary part of each of the diagonal elements is 0. This is always true for
any Hermitian matrix.

The symmetry properties of symmetric matrices and Hermitian matrices enable
storage of only the upper-triangular part of the matrix (the diagonal and above)
or the lower-triangular part of the matrix (the diagonal and below).

8.2.3 Storage of Symmetric and Hermitian Matrices
All n by n symmetric or Hermitian matrices are stored in one of two ways:

• In either the upper or lower triangle of a two-dimensional array

• Packed in a one-dimensional array

8.2.3.1 Two-Dimensional Upper- or Lower-Triangular Storage
When the upper-triangular part of the matrix is stored in the upper triangle
of the array, the strictly lower-triangular part of the array is not referenced.
Conversely, when the lower-triangular part of the matrix is stored in the
lower triangle of the array, the strictly upper-triangular part of the array is
not referenced.

As an example, consider a 4 by 4 real symmetric matrix A:

A =

2
64
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3
75

Upper-triangular storage in a two-dimensional array A is shown in (8–4):

A =

2
64
a11 a12 a13 a14
� a22 a23 a24
� � a33 a34
� � � a44

3
75 (8–4)

Lower-triangular storage in a two-dimensional array A is shown in (8–5):

A =

2
64
a11 � � �
a21 a22 � �
a31 a32 a33 �
a41 a42 a43 a44

3
75 (8–5)
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8.2.3.2 One-Dimensional Packed Storage
The total number of elements in an n by n symmetric or Hermitian matrix is n2.
The total number of elements in the upper or lower triangle is as follows:

1 + 2 + :::+ n =
n(n+ 1)

2

Therefore, when an n by n symmetric or complex Hermitian matrix is stored in
a one-dimensional array, n(n + 1)=2 memory locations are used. The amount of
memory saved is as follows:

n2� n(n+ 1)

2
=

n(n� 1)

2

Such an arrangement is called packed storage. Either the upper triangle of the
matrix can be packed sequentially, column by column, or the lower triangle of the
matrix can be packed sequentially, column by column.

As an example, consider a 4 by 4 real symmetric matrix A:

A =

2
64
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3
75

Upper triangle packing for A in a one-dimensional array AP is shown in (8–6):

AP =

2
66666666666666666666666666666664

a11
. . .
a12

a22
. . .
a13

a23

a33
. . .
a14

a24

a34

a44

3
77777777777777777777777777777775

=

2
66666666666666666666666666666664

a11
. . .
a21

a22
. . .
a31

a32

a33
. . .
a41

a42

a43

a44

3
77777777777777777777777777777775

(8–6)

For symmetric matrices, packing the upper triangle by columns is equivalent to
packing the lower triangle by rows. For Hermitian matrices, the only difference
is that the off-diagonal elements are conjugated.

In this packed storage scheme, the ijth element in the upper triangle of the real
symmetric matrix is stored in position k of the array, where:

k = i+ (j(j � 1)=2); for 1 � i � j and 1 � j � n
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For example, element a13 is in position 1 + (3(3� 1)=2) = 4 of the array, and
element a24 is in position 2 + (4(4 � 1)=2) = 8 of the array.

The following Fortran program segment transfers the upper triangle of a
symmetric matrix from conventional full matrix storage in a two-dimensional
array A to upper-triangle packed storage in a one-dimensional array AP:

K=0
DO 20 J=1,N

DO 10 I=1,J
K=K+1
AP(K)=A(I,J)

10 CONTINUE
20 CONTINUE

Lower triangle packing for A in a one-dimensional array AP is shown in (8–7):

AP =

2
66666666666666666666666666666664

a11

a21

a31

a41
. . .
a22

a32

a42
. . .
a33

a43
. . .
a44

3
77777777777777777777777777777775

=

2
66666666666666666666666666666664

a11

a12

a13

a14
. . .
a22

a23

a24
. . .
a33

a34
. . .
a44

3
77777777777777777777777777777775

(8–7)

For symmetric matrices, packing the lower triangle by columns is equivalent to
packing the upper triangle by rows. For Hermitian matrices, the only difference
is that the off-diagonal elements are conjugated.

In this packed storage scheme, the ijth element in the lower triangle of the real
symmetric matrix is stored in position k of the array where:

k = i� (j(j � 1)=2) + n(j � 1); for j � i � n and 1 � j � n

For example, element a31 is in position 3� 1(1� 1)=2 + 4(1� 1) = 3 of the array,
and element a43 is in position 4� 3(3� 1)=2 + 4(3� 1) = 9 of the array.

The following Fortran program segment transfers the lower triangle of a
symmetric matrix from conventional full matrix storage in a two-dimensional
array A to lower-triangle packed storage in a one-dimensional array AP:

K=0
DO 20 J=1,N

DO 10 I=J,N
K=K+1
AP(K)=A(I,J)

10 CONTINUE
20 CONTINUE
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8.2.4 Triangular Matrices
A triangular matrix is a square matrix whose nonzero elements are all either
in the upper-triangular part of the matrix or in the lower-triangular part of the
matrix.

In an n by n upper-triangular matrix, uij = 0 for all i > j . In addition, for a unit
upper-triangular matrix, uii = 1 for 1 � i � n.

The matrix U shown in (8–8) is a 4 by 4 upper-triangular matrix:

U =

2
64
u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

3
75 (8–8)

In an n by n lower-triangular matrix, lij = 0 for all i < j . In addition, for a unit
lower-triangular matrix, lii = 1 for 1 � i � n.

The matrix L shown in (8–9) is a 4 by 4 lower-triangular matrix:

L =

2
64
l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

3
75 (8–9)

8.2.5 Storage of Triangular Matrices
When an n by n upper- or lower-triangular matrix is stored conventionally in a
two-dimensional array, the (n � 1) by (n � 1) strictly lower- or upper-triangular
part of the array is not referenced by the subroutine. In the case of a unit upper-
or lower-triangular matrix, the main diagonal elements of the array are also not
referenced, because these elements are assumed to be unity.

As in the case of symmetric and Hermitian matrices, upper- and lower-triangular
matrices can be packed in a one-dimensional array. The upper or lower triangle
is packed sequentially, column by column. For packed triangular matrices, the
same storage layout is used whether or not the diagonal elements are assumed
to have the value 1. That is, space is left for the diagonal elements even if those
array elements are not referenced.

8.2.6 General Band Matrices
A general band matrix, or band matrix, is a matrix whose nonzero elements are
all near the main diagonal such that:

aij = 0 for (i� j) > kl or (j � i) > ku

The lower bandwidth is kl, the upper bandwidth is ku, and the total bandwidth
is kt = (kl + ku + 1). The matrix is said to have kl subdiagonals and ku
superdiagonals.
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The m by n matrix B shown in (8–10) is a general band matrix where the lower
bandwidth is kl = (g � 1) and the upper bandwidth is ku = (p� 1):

B =

2
666666666666666664

b11 b12 b13 : b1p 0 : : 0
b21 b22 b23 : : :
b31 b32 b33 : :
: : : 0
: : bn�p+1;n
bg1 :

:
0 : :
: : : :
: : : : :
: : : :
0 : : : 0 bm;m�g+1 : : bmn

3
777777777777777775

(8–10)

In matrix B, the number ku is the number (p � 1) of diagonals above the main
diagonal. The number kl is the number (g � 1) of diagonals below the main
diagonal. Including the main diagonal, the total bandwidth (or the total number
of diagonals) is (kl+ ku+ 1).

The matrix B shown in (8–11) is a 7 by 8 band matrix with bandwidths kl = 2
and ku = 1 and total bandwidth of 4:

L =

2
66666664

1 2 0 0 0 0 0 0
3 4 5 0 0 0 0 0
6 7 8 9 0 0 0 0
0 10 11 12 13 0 0 0
0 0 14 15 16 17 0 0
0 0 0 18 19 20 21 0
0 0 0 0 22 23 24 25

3
77777775

(8–11)

8.2.7 Storage of General Band Matrices
When stored in band storage mode, an m by n band matrix with kl subdiagonals
and ku superdiagonals is stored in a two-dimensional (kl+ ku+1) by n array. The
matrix is stored columnwise so that the nonzero elements of the jth column of
the matrix are stored in the jth column of the Fortran array. Consequently, the
zero elements of the matrix are not stored in the array.

The main diagonal of the matrix is stored in row ku + 1 of the array. The first
superdiagonal is stored in row ku starting at column 2. The first subdiagonal is
stored in row ku + 2 starting at column 1, and so on. Elements of the array that
do not correspond to elements in the band matrix, specifically those in the top
left ku by ku triangle and those in the bottom right (n �m + kl) by (n �m + kl)
triangle, are not referenced by the subroutine.

For example, consider the 5 by 6 band matrix A shown in (8–12) with 1
subdiagonal and 2 superdiagonals. Here, kl = 1, ku = 2, m = 5, and n = 7:

A =

2
6664
a11 a12 a13 0 0 0
a21 a22 a23 a24 0 0
0 a32 a33 a34 a35 0
0 0 a43 a44 a45 a46
0 0 0 a54 a55 a56

3
7775 (8–12)
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The band matrix A is stored in array ABD as shown in (8–13). Array ABD is 4 by
6. The main diagonal of A is stored in row 3 of ABD. The first superdiagonal is
stored in row 3 starting at column 2. The top left 2 by 2 triangle and the bottom
right 2 by 2 triangle is not referenced.

ABD =

2
64
� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 �
a21 a32 a43 a54 � �

3
75 (8–13)

In this storage scheme, the ijth element of the band matrix is stored in position
(k; j ) of the array, where k = (i� j + ku+ 1).

The following Fortran program segment transfers a band matrix from
conventional Fortran full matrix storage in A to band storage in array ABD:

DO 20 J=1,N
K=KU+1-J
DO 10 I=MAX(1,J-KU),MIN(M,J+KL)

ABD(K+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

8.2.8 Real Symmetric Band Matrices and Complex Hermitian Band Matrices
A real symmetric band matrix is a real band matrix that is equal to its transpose.

B = BT

A real symmetric band matrix is square. It has all its nonzero elements near the
main diagonal.

In an n by n real symmetric band matrix B,

bij = bji for all i and j

and
bij = 0 for (i� j) > k or (j � i) > k

where k is the lower or upper bandwidth. For example, matrix B, shown in
(8–14), is a real symmetric band matrix:

B =

2
66666664

2:0 3:0 0:0 0:0 0:0 0:0 0:0
3:0 3:0 �4:0 0:0 0:0 0:0 0:0
0:0 �4:0 4:0 5:0 0:0 0:0 0:0
0:0 0:0 5:0 5:0 �6:0 0:0 0:0
0:0 0:0 0:0 �6:0 6:0 7:0 0:0
0:0 0:0 0:0 0:0 7:0 7:0 �8:0
0:0 0:0 0:0 0:0 0:0 �8:0 8:0

3
77777775

(8–14)

A complex Hermitian band matrix is a square complex band matrix that is equal
to its conjugate transpose. It has all its nonzero elements near the main diagonal,
but, in general, it is not symmetric. The imaginary part of each of the diagonal
elements is 0.

For example, matrix H shown in (8–15) is a complex Hermitian band matrix:

H =

2
6664

(2; 0) (3; 1) (0; 0) (0; 0) (0; 0)
(3;�1) (3; 0) (�4; 1) (0; 0) (0; 0)
(0; 0) (�4;�1) (4; 0) (5;�1) (0; 0)
(0; 0) (0; 0) (5; 1) (5; 0) (�6; 1)
(0; 0) (0; 0) (0; 0) (�6;�1) (6; 0)

3
7775 (8–15)
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8.2.9 Storage of Real Symmetric Band Matrices or Complex Hermitian Band
Matrices

When stored in band storage mode, an n by n real symmetric or complex
Hermitian band matrix with k subdiagonals and k superdiagonals is stored
in a two-dimensional (k + 1) by n array. Either the upper-triangular band part or
the lower-triangular band part of the matrix can be stored.

When the upper-triangle storage mode is used, the nonzero elements of the upper-
triangular part of the jth column of the matrix are stored in the jth column of the
array. The main diagonal of the matrix is stored in row (k + 1) of the array. The
first superdiagonal is stored in row k, starting at column 2, and so on. Elements
of the array that do not correspond to elements in the band matrix, specifically
those in the top left k by k triangle, are not referenced.

As an example, a 6 by 6 real symmetric band matrix A is shown in (8–16). The
matrix A has two superdiagonals and two subdiagonals.

A =

2
666664

a11 a12 a13 0 0 0
a21 a22 a23 a24 0 0
a31 a32 a33 a34 a35 0
0 a42 a43 a44 a45 a46
0 0 a53 a54 a55 a56
0 0 0 a64 a65 a66

3
777775 (8–16)

The matrix A would be stored in upper-triangle storage mode in array ABD as
shown in (8–17):

ABD =

2
4 � � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

3
5 (8–17)

In this storage scheme, the nonzero element in the ijth position of the upper
triangular part of the symmetric band matrix is stored in position (m; j ) of the
array, where:

m = (i� j + k + 1); max(1; j � k) � i � j and 1 � j � n

The following Fortran program segment transfers the upper-triangular part of
a symmetric band matrix from conventional Fortran full matrix storage in A to
band storage in array ABD:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

ABD(M+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

When the lower-triangle storage mode is used, the nonzero elements of the lower-
triangular part of the jth column of the matrix are stored in the jth column of
the array. The main diagonal of the matrix is stored in row 1 of the array. The
first subdiagonal is stored in row 2 starting at column 1, and so on. Elements
of the array that do not correspond to elements in the band matrix, specifically
those in the bottom right k by k triangle, are not referenced.
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As an example, consider the 7 by 7 real symmetric band matrix A, with two
superdiagonals and two subdiagonals shown in (8–18):

A =

2
66666664

a11 a12 a13 0 0 0 0
a21 a22 a23 a24 0 0 0
a31 a32 a33 a34 a35 0 0
0 a42 a43 a44 a45 a46 0
0 0 a53 a54 a55 a56 a57
0 0 0 a64 a65 a66 a67
0 0 0 0 a75 a76 a77

3
77777775

(8–18)

The matrix A would be stored in array ABD in lower-triangle storage mode as
shown in (8–19):

ABD =

2
4 a11 a22 a33 a44 a55 a66 a77
a21 a32 a43 a54 a65 a76 �
a31 a42 a53 a64 a75 � �

3
5 (8–19)

In this storage scheme, the nonzero element in the ijth position of the lower-
triangular part of the symmetric band matrix is stored in position (m; j ) of the
array, where:

m = (i� j + 1); j � i � min(n; j + k) and 1 � j � n

The following Fortran program segment transfers the lower-triangular part of a
symmetric band matrix A from conventional Fortran full matrix storage to band
storage in array ABD:

DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)

ABD(M+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

For a complex Hermitian band matrix, the imaginary parts of the main diagonal
are by definition, 0. Therefore, the imaginary parts of the corresponding array
elements need not be set, and are assumed to be 0.

8.2.10 Upper- and Lower-Triangular Band Matrices
A triangular band matrix is a square matrix whose nonzero elements are all near
the main diagonal and are in either the upper-triangular part of the matrix or
the lower-triangular part of the matrix.

In an n by n upper-triangular band matrix U ,

uij = 0 for i > j

and
uij = 0 for (j � i) > ku

where ku is the upper bandwidth.

The matrix U shown in (8–20) is a 4 by 4 upper-triangular band matrix:

U =

2
64
1:0 2:0 0:0 0:0
0:0 3:0 4:0 0:0
0:0 0:0 5:0 6:0
0:0 0:0 0:0 7:0

3
75 (8–20)
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In an n by n lower-triangular band matrix L,

lij = 0 for i < j

and
lij = 0 for (i� j) > kl

where kl is the lower bandwidth.

The matrix L shown in (8–21) is a 4 by 4 lower-triangular band matrix:

L =

2
64
1:0 0:0 0:0 0:0
2:0 3:0 0:0 0:0
0:0 4:0 5:0 0:0
0:0 0:0 6:0 7:0

3
75 (8–21)

8.2.11 Storage of Upper- and Lower-Triangular Band Matrices
Similar to the case of real symmetric band matrices and complex Hermitian band
matrices, upper- and lower-triangular band matrices can also be stored in band
storage mode.

Upper-triangle storage mode is used for an upper-triangular band matrix.
An n by n upper-triangular band matrix with k superdiagonals is stored in a
two-dimensional (k+ 1) by n array.

When upper-triangle storage mode is used, the nonzero elements of the upper-
triangular part of the jth column of the matrix are stored in the jth column of the
array. The main diagonal of the matrix is stored in row (k + 1) of the array. The
first superdiagonal is stored in row k starting at column 2; and so on. Elements
of the array that do not correspond to elements in the band matrix, specifically
those in the top left k by k triangle, are not referenced.

As an example, a 6 by 6 upper-triangular band matrix A is shown in (8–22). The
matrix A has two superdiagonals.

A =

2
666664

a11 a12 a13 0 0 0
0 a22 a23 a24 0 0
0 0 a33 a34 a35 0
0 0 0 a44 a45 a46
0 0 0 0 a55 a56
0 0 0 0 0 a66

3
777775 (8–22)

The matrix A would be stored in upper-triangle storage mode in array ABD as
shown in (8–23):

ABD =

2
4 � � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

3
5 (8–23)

In this storage scheme, the nonzero element in the ijth position of the upper
triangular part of the upper-triangular band matrix is stored in position (m; j ) of
the array, where:

m = (i� j + k + 1); max(1; j � k) � i � j and 1 � j � n
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The following Fortran program segment transfers the upper-triangular part of an
upper-triangular band matrix from conventional Fortran full matrix storage inA
to band storage in array ABD:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

ABD(M+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Lower-triangle storage mode is used for a lower-triangular band matrix. An
n by n lower-triangular band matrix with k subdiagonals is stored in a two-
dimensional (k + 1) by n array.

When lower-triangle storage mode is used, the nonzero elements of the lower-
triangular part of the jth column of the matrix are stored in the jth column of
the array. The main diagonal of the matrix is stored in row 1 of the array; the
first subdiagonal in row 2 starting at column 1; and so on. Elements of the array
that do not correspond to elements in the band matrix, specifically those in the
bottom right k by k triangle, are not referenced.

As an example, consider the 7 by 7 lower-triangular band matrix A, with two
subdiagonals, shown in (8–24):

A =

2
66666664

a11 0 0 0 0 0 0
a21 a22 0 0 0 0 0
a31 a32 a33 0 0 0 0
0 a42 a43 a44 0 0 0
0 0 a53 a54 a55 0 0
0 0 0 a64 a65 a66 0
0 0 0 0 a75 a76 a77

3
77777775

(8–24)

The matrix A would be stored in array ABD in lower-triangle storage mode as
shown in (8–25):

ABD =

2
4 a11 a22 a33 a44 a55 a66 a77
a21 a32 a43 a54 a65 a76 �
a31 a42 a53 a64 a75 � �

3
5 (8–25)

In this storage scheme, the nonzero element in the ijth position of the lower-
triangular part of the lower-triangular band matrix is stored in position (m; j ) of
the array, where:

m = (i� j + 1); j � i � min(n; j + k) and 1 � j � n

The following Fortran program segment transfers the lower-triangular part of a
lower-triangular band matrix A from conventional Fortran full matrix storage to
band storage in array ABD:

DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)

ABD(M+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE
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8.3 Naming Conventions for Level 2 BLAS Subprograms
Each Level 2 BLAS subprogram has a name consisting of four or five characters.
The first character of the name denotes the Fortran data type of the matrix.
The second and third characters denote the type of matrix operated on by the
subprogram. The fourth and fifth characters denote the type of operation.

Table 8–1 shows the characters used in the Level 2 BLAS subprogram names and
what the characters mean.

Table 8–1 Naming Conventions: Level 2 BLAS Subprograms

Character Mnemonic Meaning

First character S Single-precision real data

D Double-precision real data

C Single-precision complex data

Z Double-precision complex data

Second and third characters GE General matrix

GB General band matrix

HE Hermitian matrix

SY Symmetric matrix

HP Hermitian matrix stored in
packed form

SP Symmetric matrix stored in
packed form

HB Hermitian band matrix

SB Symmetric band matrix

TR Triangular matrix

TP Triangular matrix stored in
packed form

TB Triangular band matrix

Fourth and fifth characters MV Matrix-vector product

R Rank-one update

RU Rank-one unconjugated update

RC Rank-one conjugated update

R2 Rank-two update

SV Solution of a system of linear
equations

For example, the name SGEMV is the subprogram for performing matrix-vector
multiplication, where the matrix is a general matrix with single-precision real
elements, and the matrix is stored using full matrix storage.
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8.4 Summary of Level 2 BLAS Subprograms
Table 8–2 summarizes the Level 2 BLAS subprograms. For the general rank-one
update (_GER) operations, two complex subprograms are provided, CGERC and
CGERU. This is the only exception to the one-to-one correspondence between real
and complex subprograms.

Subprograms for rank-one and rank-two updates applied to band matrices are
not provided because these can be obtained by calls to the rank-one and rank-two
full matrix subprogram. See Section 8.7 for information about how to make these
calls.

Table 8–2 Summary of Level 2 BLAS Subprograms

Subprogram
Name Operation

SGBMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real general band matrix or its transpose.

DGBMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real general band matrix or its transpose.

CGBMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a complex general band matrix, its transpose, or its conjugate
transpose.

ZGBMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a complex general band matrix, its transpose, or its conjugate
transpose.

SGEMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real general matrix or its transpose.

DGEMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real general matrix or its transpose.

CGEMV Calculates, in single-precision arithmetic, a matrix-vector product
for either a complex general matrix, its transpose, or its conjugate
transpose.

ZGEMV Calculates, in double-precision arithmetic, a matrix-vector product
for either a complex general matrix, its transpose, or its conjugate
transpose.

SGER Calculates, in single-precision arithmetic, a rank-one update of a real
general matrix.

DGER Calculates, in double-precision arithmetic, a rank-one update of a real
general matrix.

CGERC Calculates, in single-precision arithmetic, a rank-one conjugated update
of a complex general matrix.

ZGERC Calculates, in double-precision arithmetic, a rank-one conjugated
update of a complex general matrix.

CGERU Calculates, in single-precision arithmetic, a rank-one unconjugated
update of a complex general matrix.

ZGERU Calculates, in double-precision arithmetic, a rank-one unconjugated
update of a complex general matrix.

(continued on next page)
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Table 8–2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram
Name Operation

SSBMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric band matrix.

DSBMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric band matrix.

CHBMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian band matrix.

ZHBMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex Hermitian band matrix.

SSPMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric matrix stored in packed form.

DSPMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric matrix stored in packed form.

CHPMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian matrix stored in packed form.

ZHPMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex Hermitian matrix stored in packed form.

SSPR Calculates, in single-precision arithmetic, a rank-one update of a real
symmetric matrix stored in packed form.

DSPR Calculates, in double-precision arithmetic, a rank-one update of a real
symmetric matrix stored in packed form.

CHPR Calculates, in single-precision arithmetic, a rank-one update of a
complex Hermitian matrix stored in packed form.

ZHPR Calculates, in double-precision arithmetic, a rank-one update of a
complex Hermitian matrix stored in packed form.

SSPR2 Calculates, in single-precision arithmetic, a rank-two update of a real
symmetric matrix stored in packed form.

DSPR2 Calculates, in double-precision arithmetic, a rank-two update of a real
symmetric matrix stored in packed form.

CHPR2 Calculates, in single-precision arithmetic, a rank-two update of a
complex Hermitian matrix stored in packed form.

ZHPR2 Calculates, in double-precision arithmetic, a rank-two update of a
complex Hermitian matrix stored in packed form.

SSYMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric matrix.

DSYMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric matrix.

CHEMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian matrix.

ZHEMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex Hermitian matrix.

(continued on next page)
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Table 8–2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram
Name Operation

SSYR Calculates, in single-precision arithmetic, a rank-one update of a real
symmetric matrix.

DSYR Calculates, in double-precision arithmetic, a rank-one update of a real
symmetric matrix.

CHER Calculates, in single-precision arithmetic, a rank-one update of a
complex Hermitian matrix.

ZHER Calculates, in double-precision arithmetic, a rank-one update of a
complex Hermitian matrix.

SSYR2 Calculates, in single-precision arithmetic, a rank-two update of a real
symmetric matrix.

DSYR2 Calculates, in double-precision arithmetic, a rank-two update of a real
symmetric matrix.

CHER2 Calculates, in single-precision arithmetic, a rank-two update of a
complex Hermitian matrix.

ZHER2 Calculates, in double-precision arithmetic, a rank-two update of a
complex Hermitian matrix.

STBMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular band matrix or its transpose.

DTBMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular band matrix or its transpose.

CTBMV Calculates, in single-precision arithmetic, a matrix-vector product
for a complex triangular band matrix, its transpose, or its conjugate
transpose.

ZTBMV Calculates, in double-precision arithmetic, a matrix-vector product
for a complex triangular band matrix, its transpose, or its conjugate
transpose.

STBSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular band matrix.

DTBSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular band matrix.

CTBSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular band matrix.

ZTBSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular band matrix.

STPMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular matrix stored in packed form or its transpose.

DTPMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular matrix stored in packed form or its transpose.

CTPMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex triangular matrix stored in packed form, its transpose, or its
conjugate transpose.

(continued on next page)
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Table 8–2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram
Name Operation

ZTPMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex triangular matrix stored in packed form, its transpose, or its
conjugate transpose.

STPSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix stored in
packed form.

DTPSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix stored in
packed form.

CTPSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix stored in
packed form.

ZTPSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix stored in
packed form.

STRMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular matrix or its transpose.

DTRMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular matrix or its transpose.

CTRMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex triangular matrix, its transpose, or its conjugate transpose.

ZTRMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex triangular matrix, its transpose, or its conjugate transpose.

STRSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix.

DTRSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix.

CTRSV Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix.

ZTRSV Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix.

8.5 Calling Subprograms
All of the Level 2 subprograms are subroutines, and have the following
characteristics:

Return a vector or a matrix
Require a CALL statement from a program
Processing overwrites an output argument with the output vector
No Function Value section
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8.6 Argument Conventions
The subroutines use a list of arguments to specify the requirements and control
the result of the subroutine. All arguments are required. The argument list is in
the same order for each subprogram:

• Arguments specifying matrix options

• Arguments defining the size of the matrix

• Arguments specifying the input scalar

• Arguments describing the input matrix

• Arguments describing the input vector or vectors

• Arguments specifying the input scalar associated with the input-output vector

• Arguments describing the input-output vector

• Arguments describing the input-output matrix

Not every type of argument is needed by every subprogram.

8.6.1 Specifying Matrix Options
The arguments that specify matrix options are character arguments:

• trans

• uplo

• diag

In Fortran, a character argument can be longer than its corresponding dummy
argument. For example, the value ’ T’ for the argument trans can be passed as
’ TRANSPOSE’ .

trans
In some subroutines, the argument trans is used to select the form of the input
matrix to use in an operation. You do not change the form of the input matrix in
your application program. DXML selects the proper elements, depending on the
value of the trans argument.

For example, if A is the input matrix, and you want to use it in the operation,
set the trans argument to ’ N’ . If you want to use AT in the operation, set the
trans argument to ’ T’ . The subroutine makes the changes and selects the proper
elements from the matrix, so that AT is used. Table 8–3 shows the meaning of
the values for the argument trans.

Table 8–3 Values for the Argument TRANS

Value of trans Meaning

’ N’ or ’ n’ Operate with the matrix
’ T’ or ’ t’ Operate with the transpose of the matrix
’ C’ or ’ c’ Operate with the conjugate transpose of the matrix

When the operation is performed on a real matrix, the values ’ T’ and ’ t’ or ’ C’

and ’ c’ all have the same meaning.
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uplo
The Hermitian, symmetric, and triangular matrix subroutines (HE, SY, and TR
subroutines) use the argument uplo to specify either the upper or lower triangle.
Because of the structure of these matrices, the subroutines do not refer to all of
the matrix values. Table 8–4 shows the meaning of the values for the argument
uplo.

Table 8–4 Values for the Argument UPLO

Value of uplo Meaning

’ U’ or ’ u’ Refers to the upper triangle
’ L’ or ’ l’ Refers to the lower triangle

diag
The triangular matrix (TR) subroutines use the argument diag to specify whether
or not the triangular matrix is unit-triangular. Table 8–5 shows the meaning of
the values for the argument diag.

Table 8–5 Values for the Argument DIAG

Value of diag Meaning

’ U’ or ’ u’ Unit-triangular
’ N’ or ’ n’ Not unit-triangular

When diag is specified as ’ U’ or ’ u’ , the diagonal elements are not referenced
by the subroutine. These elements are assumed to be unity.

8.6.2 Defining the Size of the Matrix
The following arguments define the size of the input-output matrix:

• For a rectangular matrix, m rows by n columns: arguments m and n

• For a symmetric, Hermitian, or triangular matrix: argument n

• For a rectangular band matrix: arguments m and n for the rows and
columns, kl for the subdiagonals, and ku for the superdiagonals

• For a symmetric, Hermitian, or triangular band matrix: arguments n for the
dimensions and k for the diagonal

You can call a subroutine with arguments m or n equal to 0 but the subroutine
exits immediately without referencing its other arguments.

8.6.3 Describing the Matrix
The description of the matrix depends on how the matrix is stored. The matrix
can be stored in one of the following ways:

• Two-dimensional array

• Packed form of a one-dimensional array
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Two-Dimensional Array
When the matrix is stored in a two-dimensional array, the subroutine requires
the following arguments in addition to the size arguments:

• Argument a specifies the array A in which the matrix is stored

• Argument lda specifies the leading dimension of the array A

To store the matrix, the array must contain at least the number of elements as
described:

(n� 1)d+ l

n is the number of columns of the matrix
d is the leading dimension of the array with d � 1; and
l = m for the GE subroutines,
l = n for the SY, HE, and TR subroutines,
l = (kl + ku+ 1) for the GB subroutines, and
l = (k + 1) for the SB, HB, and TB subroutines.

One-Dimensional Array
When the matrix is stored packed in a one-dimensional array, the matrix is
described by only one argument, ap, which specifies the one-dimensional array in
which the matrix is stored.

To store the packed matrix, the array AP must contain at least n(n + 1)=2
elements.

8.6.4 Describing the Input Scalars
The input scalars, � and �, are always described by the dummy argument names
alpha and beta.

8.6.5 Describing the Vectors
A vector is described by three arguments:

• The length of the vector: n

When the vector x consists of n elements, the corresponding array X must be
of length at least (1 + (n� 1)jincxj).

• The location of the vector in the array: x for the vector X, y for the vector y

The location is the base address of the vector. If the argument is the name
of the array, such as X, the location of the vector is specified at X(1), but the
location can be specified at any other element of the array. The array can be
much larger than the vector that it contains.

• The spacing increment for selecting the vector elements from the array: incx
for vector x, argument incy for vector y

The increment can be positive or negative, but, unlike the Level 1 Extensions,
it cannot be equal to zero.

If you supply an input scalar beta of zero, you do not need to set the array Y.
This means that an operation such as y  �Ax can be performed without having
to set y to zero in the calling program.
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8.6.6 Invalid Arguments
The following values of the arguments are invalid:

• Any value of the arguments trans, uplo, or diag that is not defined

• m < 0 for GE and GB subroutines

• n < 0 for all subroutines

• kl < 0 for the GB subroutines

• ku < 0 for the GB subroutines

• k < 0 for the HB, SB, and TB subroutines

• lda < m for the GE subroutines

• lda < kl + ku + 1 for the GB subroutines

• lda < n for the HE, SY, and TR subroutines

• lda < k + 1 for the HB, SB, and TB subroutines

• incx = 0

• incy = 0

8.7 Rank-One and Rank-Two Updates to Band Matrices
The BLAS 2 subroutines for full matrix updates can be used to perform rank-one
and rank-two updates to band matrices. The following operation is the rank-one
update to the band matrix A:

A  A+ xyT

Vectors x and y are such that no fill-in occurs outside the band. In this case, the
update affects only a full (kl + 1) by (ku+ 1)) rectangle within the band matrix A.

The operation is shown in (8–26) for the case where m = n = 9, kl = 2, and ku = 3.
The update begins in row l and column l where l = 3 and affects only the 12
elements within A that are in the full 3 by 4 rectangle starting at all = a33.2

666666666664

a11 a12 a13 a14 0 0 0 0 0
a21 a22 a23 a24 a25 0 0 0 0
a31 a32 a33 a34 a35 a36 0 0 0
0 a42 a43 a44 a45 a46 a47 0 0
0 0 a53 a54 a55 a56 a57 a58 0
0 0 0 a64 a65 a66 a67 a68 a69
0 0 0 0 a75 a76 a77 a78 a79
0 0 0 0 0 a86 a87 a88 a89
0 0 0 0 0 0 a97 a98 a99

3
777777777775

+2
666666666664

0
0
x3
x4
x5
0
0
0
0

3
777777777775

[ 0 0 y3 y4 y5 y6 0 0 0 ] (8–26)
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For real data, SGER with � = 1 provides this operation, as shown in the following
code fragment:

KM=MIN(KL+1,M-L+1)
KN=MIN(KU+1,N-L+1)
CALL SGER (KM, KN, 1., X, 1, Y, 1, A(KU+1,L), MAX(KM,LDA-1))

L denotes the starting row and column for the update. The elements xl and yl of
the vectors x and y are in elements X(l) and Y(l) of the arrays X and Y.

For the case where A is a symmetric band matrix of n by n with k subdiagonals
and k superdiagonals, the operation can be achieved by a call to the subroutine
SSYR, referring to either the upper or lower triangle of A. To refer to the
upper-triangular part of A, use the following call to SSYR:

KN=MIN(K+1,N-L+1)
CALL SSYR (’U’, KN, 1., X, 1, A(K+1,L), MAX(1,LDA-1))

To refer to the lower-triangular part of A, use the following call to SSYR:

KN=MIN(K+1,N-L+1)
CALL SSYR (’L’, KN, 1., X, 1, A(1,L), MAX(1,LDA-1))

If the data is complex, the same operations can be achieved by calls to the
subroutines CGER and CHER.

Rank-two updates for real symmetric band matrices and complex Hermitian band
matrices can be achieved by calls to the subroutines SSYR2 and CHER2.

8.8 Error Handling
The BLAS Level 2 subroutines provide a check of the input arguments. If you
call a Level 2 subroutine with an invalid value for any of its arguments, DXML
reports the message and terminates execution of the program.

The code for BLAS Level 2 subroutines has calls to an input argument error
handler, the XERBLA routine. When a subroutine detects an error, it passes the
name of the subroutine and the number of the first argument that is in error to
the XERBLA routine. DXML directs this information to the device or file defined
as stdout.

8.9 A Look at a Level 2 BLAS Subroutine
SGEMV computes a matrix-vector product for either a real general matrix or its
transpose:

y  �Ax+ �y

or
y  �AT x+ �y

where � and � are scalars, x and y are vectors, and A is an m by n matrix.

Let A be the following 6 by 6 matrix:

A =

2
666664

1:0 2:0 3:0 4:0 5:0 6:0
7:0 8:0 9:0 10:0 11:0 12:0
13:0 14:0 15:0 16:0 17:0 18:0
19:0 20:0 21:0 22:0 23:0 24:0
25:0 26:0 27:0 28:0 29:0 30:0
31:0 32:0 33:0 34:0 35:0 36:0

3
777775
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Let x be the vector:

x = [ 2:0 4:0 6:0 8:0 10:0 12:0 14:0 16:0 ]

Let y be the vector:

y = [ 1:0 3:0 5:0 7:0 9:0 11:0 13:0 15:0 17:0 ]

The subroutine SGEMV has the following format:

CALL SGEMV(trans,m,n,alpha,lda,x,incx,beta,y,incy)

The following code calls SGEMV:

REAL A(6,6), ALPHA, BETA, X(8), Y(9)
INTEGER LDA,INCY,INCX,M,N
CHARACTER TRANS

CALL SGEMV(’n’, 2, 3, 1.0, a(2,2), 6, x(1), 2, 0.0, y(1), 1)

This code multiplies the submatrix�
8:0 9:0 10:0
14:0 15:0 16:0

�

by the vector [ 2:0 6:0 10:0 ] to give the new vector y:

[ 170:0 278:0 5:0 7:0 9:0 11:0 13:0 15:0 17:0 ]

The vector x and the matrix A are unchanged.

The following code uses the transpose:

SGEMV(’t’, 2, 2, 2.0, a, 6, x(3), 1, 1.0, y(1), 1)

This code multiplies the transpose of the submatrix�
1:0 2:0
7:0 8:0

�

by the vector

�

�
6:0
8:0

�

where � is 2.0, and then adds the result to � where � is equal to 1.0 times the
first two elements of the vector y to produce the new vector y:

[ 125:0 155:0 5:0 7:0 9:0 11:0 13:0 15:0 17:0 ]

The vector x and the matrix A remain unchanged.
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Level 2 BLAS Subprograms

This section provides descriptions of the Level 2 BLAS subroutines for real and
complex operations.
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SGBMV DGBMV CGBMV ZGBMV
Matrix-Vector Product for a General Band Matrix

Format

{S,D,C,Z}GBMV (trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

Arguments

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , the operation is y  �Ax+ �y.
If trans = ’ T’ or ’ t’ , the operation is y  �AT x+ �y.
If trans = ’ C’ or ’ c’ , the operation is y  �AHx+ �y.

On exit, trans is unchanged.

m
integer*4
On entry, the number of rows of the matrix A; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix A; n � 0.
On exit, n is unchanged.

kl
integer*4
On entry, the number of sub-diagonals of the matrix A; kl � 0.
On exit, kl is unchanged.

ku
integer*4
On entry, the number of super-diagonals of the matrix A; ku � 0.
On exit, ku is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n. The leading m
by n part of the array contains the elements of the matrix A, supplied column
by column. The leading diagonal of the matrix is stored in row (ku + 1) of the
array, the first super-diagonal is stored in row ku starting at position 2, the first
sub-diagonal is stored in row (ku +2) starting at position 1, and so on. Elements
in the array A that do not correspond to elements in the matrix (such as the top
left ku by ku triangle) are not referenced.
On exit, a is unchanged.
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lda
integer*4
On entry, the first dimension of array A; lda � (kl + ku+ 1).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array containing the vector x. When trans is equal
to ’ N’ or ’ n’ , the length of the array is at least (1 + (n � 1) � jincxj). Otherwise,
the length is at least (1 + (m� 1) � jincxj).
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, beta is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array containing the vector y. When trans is equal
to ’ N’ or ’ n’ , the length of the array is at least (1 + (m � 1) � jincyj). Otherwise,
the length is at least (1 + (n� 1) � jincyj).
If � = 0, y need not be set. If � is not equal to zero, the incremented array Y
must contain the vector y.
On exit, y is overwritten by the updated vector y.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

Description

The _GBMV subprograms compute a matrix-vector product for either a general
band matrix or its transpose:

y  �Ax+ �y

y  �AT x+ �y

In addition to these operations, the CGBMV and ZGBMV subprograms compute a
matrix-vector product for the conjugate transpose:

y  �AHx+ �y

� and � are scalars, x and y are vectors, and A is an m by n band matrix.
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Example

COMPLEX*16 A(5,20), X(20), Y(20), ALPHA, BETA
M = 5
N = 20
KL = 2
KU = 2
ALPHA = (1.0D0, 2.0D0)
LDA = 5
INCX = 1
BETA = (0.0D0, 0.0D0)
INCY = 1
CALL ZGBMV(’N’,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code multiplies a pentadiagonal matrix A by the vector x to get the
vector y. The operation is y  Ax where A is stored in banded storage form.
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SGEMV DGEMV CGEMV ZGEMV
Matrix-Vector Product for a General Matrix
(Serial and Parallel Versions)

Format

{S,D,C,Z}GEMV (trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

Arguments

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , the operation is y  �Ax+ �y.
If trans = ’ T’ or ’ t’ , the operation is y  �AT x+ �y.
If trans = ’ C’ or ’ c’ , the operation is y  �AHx+ �y.

On exit, trans is unchanged.

m
integer*4
On entry, the number of rows of the matrix A; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n. The leading m by n
part of the array contains the elements of the matrix A.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A; lda � max(1;m).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array containing the vector x. When trans is equal
to ’ N’ or ’ n’ , the length of the array is at least (1 + (n� 1) � jincxj). Otherwise,
the length is at least (1 + (m� 1) � jincxj).
On exit, x is unchanged.
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incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, beta is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array containing the vector y. When trans is equal
to ’ N’ or ’ n’ , the length of the array is at least (1 + (m � 1) � jincyj). Otherwise,
the length is at least (1 + (n� 1) � jincyj).
If � = 0, y need not be set. If � is not equal to zero, the incremented array Y
must contain the vector y.
On exit, y is overwritten by the updated vector y.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

Description

The _GEMV subprograms compute a matrix-vector product for either a general
matrix or its transpose:

y  �Ax+ �y

y  �AT x+ �y

In addition to these operations, the CGEMV and ZGEMV subprograms compute
the matrix-vector product for the conjugate transpose:

y  �AHx+ �y

� and � are scalars, x and y are vectors, and A is an m by n matrix.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Examples

1. REAL*8 A(20,20), X(20), Y(20), ALPHA, BETA
INCX = 1
INCY = 1
LDA = 20
M = 20
N = 20
ALPHA = 1.0D0
BETA = 0.0D0
CALL DGEMV(’T’,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  AT x.
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2. COMPLEX A(20,20), X(20), Y(20), ALPHA, BETA
INCX = 1
INCY = 1
LDA = 20
M = 20
N = 20
ALPHA = (1.0, 1.0)
BETA = (0.0, 0.0)
CALL CGEMV(’T’,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  AT x.
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SGER DGER CGERC ZGERC CGERU ZGERU
Rank-One Update of a General Matrix

Format

{S,D}GER (m, n, alpha, x, incx, y, incy, a, lda)

{C,Z}GER{C,U} (m, n, alpha, x, incx, y, incy, a, lda)

Arguments

m
integer*4
On entry, the number of rows of the matrix A; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (m� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array of length at least (1 + (n � 1) � jincyj). The
incremented array Y must contain the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n. The leading m by n
part of the array contains the elements of the matrix A.
On exit, a is overwritten by the updated matrix.
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lda
integer*4
On entry, the first dimension of A; lda � max(1;m).
On exit, lda is unchanged.

Description

SGER and DGER perform a rank-one update of a real general matrix:

A  �xyT + A

CGERU and ZGERU perform a rank-one update of an unconjugated complex
general matrix:

A  �xyT + A

CGERC and ZGERC perform a rank-one update of a conjugated complex general
matrix:

A  �xyH + A

� is a scalar, x is an m-element vector, y is an n-element vector, and A is an m by
n matrix.

Examples

1. REAL*4 A(10,10), X(10), Y(5), ALPHA
INCX = 1
INCY = 1
LDA = 10
M = 3
N = 4
ALPHA = 2.3
CALL SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)

This Fortran code computes the rank-1 update A  �xyT + A. Only the
upper left submatrix of A, of dimension (3,4) and starting at location A(1,1),
is updated.

2. COMPLEX A(10,10), X(10), Y(5), ALPHA
INCX = 1
INCY = 1
LDA = 10
M = 3
N = 4
ALPHA = (2.3, 1.2)
CALL CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)

This Fortran code computes the rank-1 update A  �xyH + A. Only the
upper left submatrix of A, of dimension (3,4) and starting at location A(1,1),
is updated.
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SSBMV DSBMV CHBMV ZHBMV
Matrix-Vector Product for a Symmetric or Hermitian Band Matrix

Format

{S,D}SBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

{C,Z}HBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the array A is
referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is referenced.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

k
integer*4
On entry, if uplo specifies the upper portion of matrix A, k represents the
number of super-diagonals of the matrix. If uplo specifies the lower portion, k is
the number of subdiagonals; k � 0.
On exit, k is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading (k + 1) by n part
of the array must contain the upper-triangular band part of the matrix, supplied
column by column. The main diagonal of the matrix is stored in row (k+1) of the
array, the first super-diagonal is stored in row k starting at position 2, and so on.
The top left k by k triangle of the array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading (k + 1) by n part
of the array must contain the lower-triangular band part of the matrix, supplied
column by column. The main diagonal of the matrix is stored in row 1 of the
array, the first sub-diagonal is stored in row 2, starting at position 1, and so on.
The bottom right k by k triangle of the array A is not referenced.

For CHBMV and ZHBMV routines, the imaginary parts of the diagonal elements
are not accessed, need not be set, and are assumed to be zero.
On exit, a is unchanged.
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lda
integer*4
On entry, the first dimension of array A; lda � (k + 1).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, beta is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
If � = 0, y need not be set. If � is not equal to zero, the incremented array Y
must contain the vector y.
On exit, y is overwritten by the updated vector y.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

Description

SSBMV and DSBMV compute a matrix-vector product for a real symmetric band
matrix. CHBMV and ZHBMV compute a matrix-vector product for a complex
Hermitian band matrix. Both products are described by the following operation:

y  �Ax+ �y

� and � are scalars, and x and y are vectors with n elements. In the case of
SSBMV and DSBMV, A is a symmetric matrix and in the case of CHBMV and
ZHBMV, A is a Hermitian matrix.

Example

REAL*8 A(2,10), X(10), Y(10), ALPHA, BETA
N = 10
K = 1
ALPHA = 2.0D0
LDA = 2
INCX = 1
BETA = 1.0D0
INCY = 1
CALL DSBMV(’U’,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
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This Fortran code computes the product y  �Ax + y where A is a symmetric
tridiagonal matrix, with A stored in upper-triangular form.

COMPLEX*8 A(2,10), X(10), Y(10), ALPHA, BETA
N = 10
K = 1
ALPHA = (2.0D0, 2.2D0)
LDA = 2
INCX = 1
BETA = (1.0D0, 0.0D0)
INCY = 1
CALL ZHBMV(’U’,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  �Ax + y where A is a Hermitian
tridiagonal matrix, with the upper diagonal of A stored.
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SSPMV DSPMV CHPMV ZHPMV
Matrix-Vector Product for a Symmetric or Hermitian Matrix Stored in
Packed Form

Format

{S,D}SPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)

{C,Z}HPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the matrixA is
supplied in the packed array AP:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is supplied.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is supplied.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

ap
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array AP of length at least n(n+ 1)=2.

If uplo specifies the upper triangular part of the matrix A, the array contains
those elements of the matrix, packed sequentially, column by column, so that
AP(1) contains a11, AP(2) and AP(3) contain a12 and a22 respectively, and so on.

If uplo specifies the lower triangular part to the matrix A, the array contains
those elements of the matrix, also packed sequentially, so that AP(1) contains a11,
AP(2) and AP(3) contain a21 and a31 respectively, and so on.

For CHPMV and ZHPMV routines, the imaginary parts of the diagonal elements
are not accessed, need not be set, and are assumed to be zero.
On exit, ap is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.
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incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, beta is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
If � = 0, y need not be set. If � is not equal to zero, the incremented array Y
must contain the vector y.
On exit, y is overwritten by the updated vector y.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

Description

SSPMV and DSPMV compute a matrix-vector product for a real symmetric matrix
stored in packed form. CHPMV and ZHPMV compute a matrix-vector product for
a complex Hermitian matrix stored in packed form. Both products are described
by the following operation:

y  �Ax+ �y

� and � are scalars, and x and y are vectors with n elements. A is an n by n
matrix. In the case of SSPMV and DSPMV, matrix A is a symmetric matrix and
in the case of CHPMV and ZHPMV, matrix A is a Hermitian matrix.

Example

COMPLEX*16 AP(250), X(20), Y(20), ALPHA, BETA
N = 20
ALPHA = (2.3D0, 8.4D0)
INCX = 1
BETA = (4.0D0, 3.3D0)
INCY = 1
CALL ZHPMV(’L’,N,ALPHA,AP,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  �Ax + �y where A is a Hermitian
matrix with its lower-triangular part stored in packed form in AP.
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SSPR DSPR CHPR ZHPR
Rank-One Update of a Symmetric or Hermitian Matrix Stored in
Packed Form

Format

{S,D}SPR (uplo, n, alpha, x, incx, ap)

{C,Z}HPR (uplo, n, alpha, x, incx, ap)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the matrixA is
supplied in the packed array AP:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is supplied.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is supplied.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

ap
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array AP of length at least n(n+ 1)=2.

If uplo specifies the upper triangular part of the matrix A, the array contains
those elements of the matrix, packed sequentially, column by column, so that
AP(1) contains a11, AP(2) and AP(3) contain a12 and a22 respectively, and so on.

If uplo specifies the lower triangular part to the matrix A, the array contains
those elements of the matrix, also packed sequentially, so that AP(1) contains a11,
AP(2) and AP(3) contain a21 and a31 respectively, and so on.

For CHPR and ZHPR routines, the imaginary parts of the diagonal elements are
not accessed, need not be set, and are assumed to be zero.
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On exit, ap is overwritten by the specified part of the updated matrix.

Description

SSPR and DSPR perform the rank-one update of a real symmetric matrix stored
in packed form:

A  �xxT + A

CHPR and ZHPR perform the rank-one update of a complex Hermitian matrix
stored in packed form:

A  �xxH + A

� is a scalar, x is vector with n elements, and A is an n by n matrix in packed
form. In the case of SSPR and DSPR, matrix A is a symmetric matrix and in the
case of CHPR and ZHPR, matrix A is a Hermitian matrix.

Example

REAL*8 AP(500), X(30), Y(30), ALPHA
INCX = 1
ALPHA = 1.0D0
N = 30
CALL DSPR(’U’,N,ALPHA,X,INCX,AP)

This Fortran code computes the rank-1 update A  xxT + A where A is a real
symmetric matrix, of order 30, with its upper-triangular part stored in packed
form in AP.
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SSPR2 DSPR2 CHPR2 ZHPR2
Rank-Two Update of a Symmetric or Hermitian Matrix Stored in
Packed Form

Format

{S,D}SPR2 (uplo, n, alpha, x, incx, y, incy, ap)

{C,Z}HPR2 (uplo, n, alpha, x, incx, y, incy, ap)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the matrixA is
supplied in the packed array AP:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of matrix A is supplied.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of matrix A is supplied.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj). The
incremented array Y must contain the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.
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ap
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array AP of length at least n(n+ 1)=2.

If uplo specifies the upper triangular part of the matrix A, the array contains
those elements of the matrix, packed sequentially, column by column, so that
AP(1) contains a11, AP(2) and AP(3) contain a12 and a22 respectively, and so on.

If uplo specifies the lower triangular part to the matrix A, the array contains
those elements of the matrix, also packed sequentially, so that AP(1) contains a11,
AP(2) and AP(3) contain a21 and a31 respectively, and so on.

For CHPR2 and ZHPR2 routines, the imaginary parts of the diagonal elements
are not accessed, need not be set, and are assumed to be zero.

On exit, ap is overwritten by the specified part of the updated matrix.

Description

SSPR2 and DSPR2 perform the rank-two update of a real symmetric matrix
stored in packed form:

A  �xyT + �yxT + A

CHPR2 and ZHPR2 perform the rank-two update of a complex Hermitian matrix
stored in packed form:

A  �xyH + �yxH + A

� is a scalar, x is vector with n elements, and A is an n by n matrix in packed
form. In the case of SSPR2 and DSPR2, matrix A is a symmetric matrix and in
the case of CHPR2 and ZHPR2, matrix A is a Hermitian matrix.

Example

REAL*4 AP(250), X(20), Y(20), ALPHA
INCX = 1
INCY = 1
ALPHA = 2.0
N = 20
CALL SSPR2(’L’,N,ALPHA,X,INCX,Y,INCY,AP)

This Fortran code computes the rank-2 update of a real symmetric matrix A,
given by A  �xyT + �yxT + A. A is a real symmetric matrix, of order 20, with
its lower-triangular part stored in packed form in AP.
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SSYMV DSYMV CHEMV ZHEMV
Matrix-Vector Product for a Symmetric or Hermitian Matrix

Format

{S,D}SYMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

{C,Z}HEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the array A is
referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is referenced.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading n by n part
of the array contains the upper-triangular part of the matrix, and the lower-
triangular part of array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading n by n part of the
array contains the lower-triangular part of the matrix, and the upper-triangular
part of array A is not referenced.

For CHEMV and ZHEMV routines, the imaginary parts of the diagonal elements
are not accessed, need not be set, and are assumed to be zero.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A; lda � max(1; n).
On exit, lda is unchanged.
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x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, beta is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
If � = 0, y need not be set. If � is not equal to zero, the incremented array Y
must contain the vector y.
On exit, y is overwritten by the updated vector y.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

Description

SSYMV and DSYMV compute a matrix-vector product for a real symmetric
matrix. CHEMV and ZHEMV compute a matrix-vector product for a complex
Hermitian matrix. Both products are described by the following operation:

y  �Ax+ �y

� and � are scalars, x and y are vectors with n elements, and A is an n by n
matrix. In the case of SSYMV and DSYMV, matrix A is a symmetric matrix and
in the case of CHEMV and ZHEMV, matrix A is a Hermitian matrix.

Examples

1. REAL*8 A(100,40), X(40), Y(40), ALPHA, BETA
N = 40
INCX = 1
INCY = 1
ALPHA = 1.0D0
BETA = 0.0D0
LDA = 100
CALL DSYMV(’U’,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  Ax where A is a symmetric
matrix, of order 40, with its upper-triangular part stored.
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2. COMPLEX A(100,40), X(40), Y(40), ALPHA, BETA
N = 40
INCX = 1
INCY = 1
ALPHA = (1.0, 0.5)
BETA = (0.0, 0.0)
LDA = 100
CALL CHEMV(’U’,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

This Fortran code computes the product y  Ax where A is a Hermitian
matrix, of order 40, with its upper-triangular part stored.
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SSYR DSYR CHER ZHER
Rank-One Update of a Symmetric or Hermitian Matrix

Format

{S,D}SYR (uplo, n, alpha, x, incx, a, lda)

{C,Z}HER (uplo, n, alpha, x, incx, a, lda)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the array A is
referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is referenced.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A and the number of elements in vector x;
n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading n by n part
of the array contains the upper-triangular part of the matrix, and the lower-
triangular part of array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading n by n part of the
array contains the lower-triangular part of the matrix, and the upper-triangular
part of array A is not referenced.

For CHER and ZHER routines, the imaginary parts of the diagonal elements are
not accessed, need not be set, and are assumed to be zero.
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On exit, a is overwritten; the specified part of the array A is overwritten by the
part of the updated matrix.

lda
integer*4
On entry, the first dimension of array A; lda � max(1; n).
On exit, lda is unchanged.

Description

SSYR and DSYR perform the rank-one update of a real symmetric matrix:

A  �xxT + A

CHER and ZHER perform the rank-one update of a complex Hermitian matrix:

A  �xxH + A

� is a scalar, x is vector with n elements, and A is an n by n matrix in packed
form. In the case of SSYR and DSYR, matrix A is a symmetric matrix and in the
case of CHER and ZHER, matrix A is a Hermitian matrix.

Examples

1. REAL*4 A(50,20), X(20), ALPHA
INCX = 1
LDA = 50
N = 20
ALPHA = 2.0
CALL SSYR(’L’,N,ALPHA,X,INCX,A,LDA)

This Fortran code computes the rank-1 update of the matrix A, given by
A  �xxT + A. A is a real symmetric matrix with its lower-triangular part
stored.

2. COMPLEX*16 A(50,20), X(20), ALPHA
INCX = 1
LDA = 50
N = 20
ALPHA = (2.0D0, 1.0D0)
CALL ZHER(’L’,N,ALPHA,X,INCX,A,LDA)

This Fortran code computes the rank-1 update of the matrix A, given by
A  �xxH + A. A is a complex Hermitian matrix with its lower-triangular
part stored.
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SSYR2 DSYR2 CHER2 ZHER2
Rank-Two Update of a Symmetric or Hermitian Matrix

Format

{S,D}SYR2 (uplo, n, alpha, x, incx, y, incy, a, lda)

{C,Z}HER2 (uplo, n, alpha, x, incx, y, incy, a, lda)

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the array A is
referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is referenced.

On exit, uplo is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, the scalar �.
On exit, alpha is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array Y of length at least (1 + (n � 1) � jincyj). The
incremented array Y must contain the vector y.
On exit, y is unchanged.

incy
integer*4
On entry, the increment for the elements of Y; incy must not equal zero.
On exit, incy is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.
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When uplo specifies the upper portion of the matrix, the leading n by n part
of the array contains the upper-triangular part of the matrix, and the lower-
triangular part of array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading n by n part of the
array contains the lower-triangular part of the matrix, and the upper-triangular
part of array A is not referenced.

For complex routines, the imaginary parts of the diagonal elements need not be
set. They are assumed to be 0, and on exit they are set to 0.

On exit, a is overwritten; the specified part of the array A is overwritten by the
specified part of the updated matrix.

lda
integer*4
On entry, the first dimension of array A; lda � max(1; n).
On exit, lda is unchanged.

Description

SSYR2 and DSYR2 perform the rank-two update of a real symmetric matrix:

A  �xyT + �yxT + A

CHER2 and ZHER2 perform the rank-two update of a complex Hermitian matrix:

A  �xyH + �yxH + A

� is a scalar, x and y are vectors with n elements, and A is an n by n matrix. In
the case of SSYR2 and DSYR2, matrix A is a symmetric matrix and in the case of
CHER2 and ZHER2, matrix A is a Hermitian matrix.

Example

REAL*8 A(50,20), X(20), Y(20), ALPHA
INCX = 1
LDA = 50
N = 20
INCY = 1
ALPHA = 1.0D0
CALL DSYR2(’U’,N,ALPHA,X,INCX,Y,INCY,A,LDA)

This Fortran code computes the rank-2 update of a real symmetric matrix A,
given by A  xyT + yxT + A. Only the upper-triangular part of A is stored.

8–52 BLAS 2 Routines



STBMV DTBMV CTBMV ZTBMV

STBMV DTBMV CTBMV ZTBMV
Matrix-Vector Product for a Triangular Band Matrix

Format

{S,D,C,Z}TBMV (uplo, trans, diag, n, k, a, lda, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , the operation is y  �Ax+ �y.
If trans = ’ T’ or ’ t’ , the operation is y  �AT x+ �y.
If trans = ’ C’ or ’ c’ , the operation is y  �AHx+ �y.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

k
integer*4
On entry, if uplo is equal to ’ U’ or ’ u’ , the number of super-diagonals k of the
matrix A. If uplo is equal to ’ L’ or ’ l’ , the number of sub-diagonals k of the
matrix A; k � 0.
On exit, k is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading (k + 1) by n part
of the array must contain the upper-triangular band part of the matrix, supplied
column by column. The main diagonal of the matrix is stored in row (k+1) of the
array, the first super-diagonal is stored in row k starting at position 2, and so on.
The bottom left k by k triangle of the array A is not referenced.
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When uplo specifies the lower portion of the matrix, the leading (k + 1) by n part
of the array must contain the lower-triangular band part of the matrix, supplied
column by column. The main diagonal of the matrix is stored in row 1 of the
array, the first sub-diagonal is stored in row 2, starting at position 1, and so on.
The top right k by k triangle of the array A is not referenced.

If diag is equal to ’ U’ or ’ u’ , the elements of the array A corresponding to the
diagonal elements of the matrix are not referenced, but are assumed to be unity.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A; lda � (k + 1).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is overwritten with the transformed vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TBMV subprograms compute a matrix-vector product for a triangular band
matrix or its transpose: x Ax or x  AT x.

In addition to these operations, the CTBMV and ZTBMV subprograms compute
the matrix-vector product for the conjugate transpose: x  AHx.

x is a vector with n elements and A is an n by n band matrix, with (k + 1)
diagonals. The band matrix is a unit or nonunit, upper- or lower-triangular
matrix.

Example

REAL*4 A(5,100), X(100)
INCX = 1
LDA = 5
K = 4
N = 100
CALL STBMV(’U’,’N’,’N’,N,K,A,LDA,X,INCX)

This Fortran code computes the product x  Ax where A is an upper-triangular,
nonunit diagonal matrix, with 4 superdiagonals.
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STBSV DTBSV CTBSV ZTBSV
Solver of a System of Linear Equations with a Triangular Band Matrix

Format

{S,D,C,Z}TBSV (uplo, trans, diag, n, k, a, lda, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the system to be solved:

If trans = ’ N’ or ’ n’ , the system is Ax = b.
If trans = ’ T’ or ’ t’ , the system is AT x = b.
If trans = ’ C’ or ’ c’ , the system is AHx = b.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

k
integer*4
On entry, if uplo is equal to ’ U’ or ’ u’ , the number of super-diagonals k of the
matrix A. If uplo is equal to ’ L’ or ’ l’ , the number of sub-diagonals k of the
matrix A; k � 0.
On exit, k is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading (k + 1) by n
part of the array contains the upper-triangular band part of the matrix, supplied
column by column. The main diagonal of the matrix is stored in row (k+1) of the
array, the first super-diagonal is stored in row k starting at position 2, and so on.
The top left k by k triangle of the array A is not referenced.
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When uplo specifies the lower portion, the leading (k + 1) by n part of the
array contains the lower-triangular band part of the matrix, supplied column by
column. The main diagonal of the matrix is stored in row 1 of the array, the first
sub-diagonal is stored in row 2 starting at position 1, and so on. The top right k
by k triangle of the array A is not referenced.

If diag is equal to ’ U’ or ’ u’ , the elements of the array A corresponding to the
diagonal elements of the matrix are not referenced, but are assumed to be unity.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A; lda � (k + 1).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector b.
On exit, x is overwritten with the solution vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TBSV subprograms solve one of the following systems of linear equations
for x: Ax = b or AT x = b. In addition to these operations, the CTBSV and ZTBSV
subprograms solve the following system of linear equations for x: AHx = b.

b and x are vectors with n elements and A is an n by n band matrix with (k + 1)
diagonals. The matrix is a unit or nonunit, upper- or lower-triangular band
matrix.

The _TBSV routines do not perform checks for singularity or near singularity
of the triangular matrix. The requirements for such a test depend on the
application. If necessary, perform the test in your application program before
calling the routine.

Example

REAL*8 A(10,100), X(100)
INCX = 1
K = 9
LDA = 10
N = 100
CALL DTBSV(’L’,’T’,’U’,N,K,A,LDA,X,INCX)

This Fortran code solves the system AT x = b where A is a lower-triangular
matrix, with a unit diagonal and 9 subdiagonals. The right hand side b is
originally contained in the vector x.
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STPMV DTPMV CTPMV ZTPMV
Matrix-Vector Product for a Triangular Matrix in Packed Form

Format

{S,D,C,Z}TPMV (uplo, trans, diag, n, ap, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , the operation is x  Ax.
If trans = ’ T’ or ’ t’ , the operation is x  AT x.
If trans = ’ C’ or ’ c’ , the operation is x  AHx.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

ap
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array AP of length at least n(n+1)

2 .

If uplo specifies the upper triangular part of the matrix A, the array contains
those elements of the matrix, packed sequentially, column by column, so that
AP(1) contains a11, AP(2) and AP(3) contain a12 and a22 respectively, and so on.

If uplo specifies the lower triangular part to the matrix A, so that AP(1) contains
a11, AP(2) and AP(3) contain a21 and a31 respectively, and so on.

If diag is equal to ’ U’ or ’ u’ , the diagonal elements of A are not referenced, but
are assumed to be unity.

On exit, ap is unchanged.
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x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is overwritten with the transformed vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TPMV subprograms compute a matrix-vector product for a triangular
matrix stored in packed form or its transpose: x Ax or x  AT x. In addition to
these operations, the CTPMV and ZTPMV subprograms compute a matrix-vector
product for the conjugate transpose: x  AHx.

x is a vector with n elements and A is an n by n, unit or nonunit, upper- or
lower-triangular matrix, supplied in packed form.

Example

REAL*4 AP(250), X(20)
INCX = 1
N = 20
CALL STPMV(’U’,’N’,’N’,N,AP,X,INCX)

This Fortran code computes the product x  Ax where A is an upper-triangular
matrix of order 20, with nonunit diagonal, stored in packed form.
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STPSV DTPSV CTPSV ZTPSV
Solve a System of Linear Equations with a Triangular Matrix in
Packed Form

Format

{S,D,C,Z}TPSV (uplo, trans, diag, n, ap, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the system to be solved:

If trans = ’ N’ or ’ n’ , the system is Ax = b.
If trans = ’ T’ or ’ t’ , the system is AT x = b.
If trans = ’ C’ or ’ c’ , the system is AHx = b.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

ap
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array AP of length at least n(n+ 1)=2.

If uplo specifies the upper triangular part of the matrix A, the array contains
those elements of the matrix, packed sequentially, column by column, so that
AP(1) contains a11, AP(2) and AP(3) contain a12 and a22 respectively, and so on.

If uplo specifies the lower triangular part to the matrix A, so that AP(1) contains
a11, AP(2) and AP(3) contain a21 and a31 respectively, and so on.

If diag is equal to ’ U’ or ’ u’ , the diagonal elements of A are not referenced, but
are assumed to be unity.
On exit, ap is unchanged.
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x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1 + (n� 1) � jincxj). Array
X contains the vector b.
On exit, x is overwritten with the solution vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TPSV subprograms solve one of the following systems of linear equations
for x: Ax = b or AT x = b. In addition to these operations, the CTPSV and ZTPSV
subprograms solve the following system of equations: AHx = b.

b and x are vectors with n elements and A is an n by n, unit or nonunit, upper- or
lower-triangular matrix, supplied in packed form.

The _TPSV routines do not perform checks for singularity or near singularity
of the triangular matrix. The requirements for such a test depend on the
application. If necessary, perform the test in your application program before
calling this routine.

Example

REAL*8 A(500), X(30)
INCX = 1
N = 30
CALL DTPSV(’L’,’T’,’N’,N,AP,X,INCX)

This Fortran code solves the system AT x = b where A is a lower-triangular matrix
of order 30, with nonunit diagonal, stored in packed form. The right hand side b
is originally contained in the vector x.
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STRMV DTRMV CTRMV ZTRMV
Matrix-Vector Product for a Triangular Matrix

Format

{S,D,C,Z}TRMV (uplo, trans, diag, n, a, lda, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , the operation is x  Ax.
If trans = ’ T’ or ’ t’ , the operation is x  AT x.
If trans = ’ C’ or ’ c’ , the operation is x  AHx.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading n by n part
of the array contains the upper-triangular part of the matrix, and the lower-
triangular part of array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading n by n part of the
array contains the lower-triangular part of the matrix, and the upper-triangular
part of array A is not referenced.

If diag is equal to ’ U’ or ’ u’ , the diagonal elements of A are also not referenced,
but are assumed to be unity.
On exit, a is unchanged.
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lda
integer*4
On entry, the first dimension of array A; lda � max(1; n).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1+ (n� 1) � jincxj). Array
X contains the vector x.
On exit, x is overwritten with the transformed vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TRMV subprograms compute a matrix-vector product for a triangular
matrix or its transpose: x  Ax or x  AT x. In addition to these operations, the
CTRMV and ZTRMV subprograms compute a matrix-vector product for conjugate
transpose: x  AHx.

x is a vector with n elements, and A is an n by n, unit or nonunit, upper- or
lower-triangular matrix.

Example

REAL*4 A(50,20), X(20)
INCX = 1
N = 20
LDA = 50
CALL STRMV(’U’,’N’,’N’,N,A,LDA,X,INCX)

This Fortran code computes the product x  Ax where A is an upper-triangular
matrix, of order 20, with a nonunit diagonal.
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STRSV DTRSV CTRSV ZTRSV

STRSV DTRSV CTRSV ZTRSV
Solver of a System of Linear Equations with a Triangular Matrix

Format

{S,D,C,Z}TRSV (uplo, trans, diag, n, a, lda, x, incx)

Arguments

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , A is a lower-triangular matrix.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the system to be solved:

If trans = ’ N’ or ’ n’ , the system is Ax = b.
If trans = ’ T’ or ’ t’ , the system is AT x = b.
If trans = ’ C’ or ’ c’ , the system is AHx = b.

On exit, trans is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

n
integer*4
On entry, the order of the matrix A; n � 0.
On exit, n is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions lda by n.

When uplo specifies the upper portion of the matrix, the leading n by n part
of the array contains the upper-triangular part of the matrix, and the lower-
triangular part of array A is not referenced.

When uplo specifies the lower portion of the matrix, the leading n by n part of the
array contains the lower-triangular part of the matrix, and the upper-triangular
part of array A is not referenced.

If diag is equal to ’ U’ or ’ u’ , the diagonal elements of A are also not referenced,
but are assumed to be unity.
On exit, a is unchanged.
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STRSV DTRSV CTRSV ZTRSV

lda
integer*4
On entry, the first dimension of array A; lda � max(1; n).
On exit, lda is unchanged.

x
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array X of length at least (1+ (n� 1) � jincxj). Array
X contains the vector b.
On exit, x is overwritten with the solution vector x.

incx
integer*4
On entry, the increment for the elements of X; incx must not equal zero.
On exit, incx is unchanged.

Description

The _TRSV subprograms solve one of the following systems of linear equations
for x: Ax = b or AT x = b. In addition to these operations, the CTRSV and ZTRSV
subprograms solve the following systems of linear equation: AHx = b.

b and x are vectors with n elements and A is an n by n, unit or nonunit, upper- or
lower-triangular matrix.

The _TRSV routines do not perform checks for singularity or near singularity
of the triangular matrix. The requirements for such a test depend on the
application. If necessary, perform the test in your application program before
calling this routine.

Example

REAL*8 A(100,40), X(40)
INCX = 1
N = 40
LDA = 100
CALL DTRSV(’L’,’N’,’U’,N,A,LDA,X,INCX)

This Fortran code solves the system Ax = b where A is a lower-triangular matrix
of order 40, with a unit diagonal. The right hand side b is originally stored in the
vector x.
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9
Using the Level 3 BLAS Subprograms

The Level 3 BLAS subprograms perform matrix-matrix operations commonly
occurring in many computational problems in linear algebra. This chapter
provides information about the following topics:

• Operations performed by the Level 3 BLAS subprograms (Section 9.1)

• Level 3 vector and matrix storage (Section 9.1.2)

• Subprogram naming conventions (Section 9.1.3)

• Subprogram summary (Section 9.2)

• Calling Level 3 BLAS subprograms (Section 9.3)

• Arguments used in the subprograms and invalid arguments
(Sections 9.4 and 9.4.5)

• Error handling (Section 9.5)

• A look at some Level 3 subprograms and their use (Section 9.6)

The reference descriptions of the Level 3 BLAS subprograms are at the end of
this chapter.

A key Level 3 BLAS subprogram, {C,D,S,Z}GEMM, has been parallelized for
improved peformance on multiprocessor systems. For information about using
the parallel library, see Chapter 4.

9.1 Level 3 BLAS Operations
The BLAS Level 3 subprograms perform operations that involve two or three
matrices. The operations do not involve vectors.

9.1.1 Types of Operations
The subprograms perform seven types of basic matrix-matrix operations:

• Matrix addition operations

C  �op(A) + �op(B))

where op(X) = X;XT ; X; orXH

• Matrix multiply-and-add operations

C  �op(A)op(B) + �C

where op(X) = X;XT ;X; orXH

• Matrix subtraction operations

C  �op(A)� �op(B)

where op(X) = X;XT ;X; orXH
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• Miscellaneous matrix operations

C  �op(A)

where op(X) = X;XT ; X; orXH

• Rank-k and rank-2k updates of a symmetric matrix

C  �AAT + �C

C  �ATA+ �C

C  �ABT + �BAT + �C

C  �ATB + �BTA+ �C

• Matrix-triangular matrix multiply operations

B  TB

B  TTB

B  BT

B  BTT

• Solution of triangular systems of equations

TX = �B

TTX = �B

XT = �B

XTT = �B

where � and � are scalars, A, B and C are rectangular matrices (sometimes
symmetric or Hermitian), and T is an upper- or lower-triangular matrix.

Where appropriate, these operations are applied to different types of matrices.
For each of the Level 3 subprograms, the matrices involved in the operations
have one of the following characteristics:

• All matrices are general rectangular.

• Only one of the matrices is symmetric.

• Only one of the matrices is Hermitian.

• Only one of the matrices is triangular.

9.1.2 Matrix Storage
For the Level 3 BLAS subroutines, all matrices are stored in a two-dimensional
array.

There is no provision for packed storage of symmetric, Hermitian, or triangular
matrices. Only the upper triangle or the lower triangle is stored. Since the
imaginary parts of the diagonal elements of a Hermitian matrix are zero, you do
not have to set the imaginary parts of the corresponding Fortran array. They are
assumed to be zero.
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9.1.3 Naming Conventions
Each Level 3 BLAS subroutine has a name consisting of five or six characters.
The first character of the name denotes the Fortran data type of the matrix. The
second and third characters denote the type of matrices involved in the operation.
The fourth, fifth, and sixth characters denote types of operations.

Table 9–1 shows the characters used in the Level 3 BLAS subroutine names and
what the characters mean.

Table 9–1 Naming Conventions: Level 3 BLAS Subprograms

Character Mnemonic Meaning

First character S Single-precision real data

D Double-precision real data

C Single-precision complex data

Z Double-precision complex data

Second and third characters GE General matrices

HE One Hermitian matrix

SY One symmetric matrix

TR One triangular matrix

Fourth, fifth, and sixth
characters

MM Matrix-matrix product

MA Matrix addition

MS Matrix subtraction

MT Matrix transposition

RK Rank-k update

R2K Rank-2k update

SM Solution of a system of linear
equations

For example, the name SGEMM is the subroutine for performing matrix-matrix
multiplication (and addition if desired), where the matrices are general matrices
with single-precision real elements.

9.2 Summary of Level 3 BLAS Subprograms
Table 9–2 summarizes the Level 3 BLAS subroutines provided by DXML. The
rank-k updates of general matrices are provided by the _GEMM subroutines.

Table 9–2 Summary of Level 3 BLAS Subprograms

Routine Name Operation

SGEMA Calculates, in single-precision arithmetic, the sum of two real general
matrices or their transposes.

(continued on next page)
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Table 9–2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name Operation

DGEMA Calculates, in double-precision arithmetic, the sum of two real general
matrices or their transposes.

CGEMA Calculates, in single-precision arithmetic, the sum of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

ZGEMA Calculates, in double-precision arithmetic, the sum of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

SGEMM Calculates, in single-precision arithmetic, a matrix-matrix product and
addition for real general matrices or their transposes.

DGEMM Calculates, in double-precision arithmetic, a matrix-matrix product and
addition for real general matrices or their transposes.

CGEMM Calculates, in single-precision arithmetic, a matrix-matrix product
and addition for complex general matrices, their transposes, their
conjugates, or their conjugate transposes.

ZGEMM Calculates, in double-precision arithmetic, a matrix-matrix product
and addition for complex general matrices, their transposes, their
conjugates, or their conjugate transposes.

SGEMS Calculates, in single-precision arithmetic, the difference of two real
general matrices or their transposes.

DGEMS Calculates, in double-precision arithmetic, the difference of two real
general matrices or their transposes.

CGEMS Calculates, in single-precision arithmetic, the difference of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

ZGEMS Calculates, in double-precision arithmetic, the difference of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

SGEMT Copies a single-precision, real general matrix or its transpose.

DGEMT Copies a double-precision, real general matrix or its transpose.

CGEMT Copies a single-precision, complex general matrix, its transpose, its
conjugate, or its conjugate transpose.

ZGEMT Copies a double-precision, complex general matrix, its transpose, its
conjugate, or its conjugate transpose.

SSYMM Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a real symmetric matrix.

DSYMM Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a real symmetric matrix.

CSYMM Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a complex symmetric matrix.

(continued on next page)
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Table 9–2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name Operation

ZSYMM Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a complex symmetric matrix.

CHEMM Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a complex Hermitian matrix.

ZHEMM Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where a matrix multiplier is a complex Hermitian matrix.

SSYRK Calculates, in single-precision arithmetic, the rank-k update of a real
symmetric matrix.

DSYRK Calculates, in double-precision arithmetic, the rank-k update of a real
symmetric matrix.

CSYRK Calculates, in single-precision arithmetic, the rank-k update of a
complex symmetric matrix.

ZSYRK Calculates, in double-precision arithmetic, the rank-k update of a
complex symmetric matrix.

CHERK Calculates, in single-precision arithmetic, the rank-k update of a
complex Hermitian matrix.

ZHERK Calculates, in double-precision arithmetic, the rank-k update of a
complex Hermitian matrix.

SSYR2K Calculates, in single-precision arithmetic, the rank-2k update of a real
symmetric matrix.

DSYR2K Calculates, in double-precision arithmetic, the rank-2k update of a real
symmetric matrix.

CSYR2K Calculates, in single-precision arithmetic, the rank-2k update of a
complex symmetric matrix.

ZSYR2K Calculates, in double-precision arithmetic, the rank-2k update of a
complex symmetric matrix.

CHER2K Calculates, in single-precision arithmetic, the rank-2k update of a
complex Hermitian matrix.

ZHER2K Calculates, in double-precision arithmetic, the rank-2k update of a
complex Hermitian matrix.

STRMM Calculates, in single-precision arithmetic, a matrix-matrix product for
a real triangular matrix or its transpose.

DTRMM Calculates, in double-precision arithmetic, a matrix-matrix product for
a real triangular matrix or its transpose.

CTRMM Calculates, in single-precision arithmetic, a matrix-matrix product for
a complex triangular matrix, its transpose, or its conjugate transpose.

ZTRMM Calculates, in double-precision arithmetic, a matrix-matrix product for
a complex triangular matrix, its transpose, or its conjugate transpose.

(continued on next page)
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Table 9–2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name Operation

STRSM Solves, in single-precision arithmetic, a triangular system of equations
where the coefficient matrix is a real triangular matrix.

DTRSM Solves, in double-precision arithmetic, a triangular system of equations
where the coefficient matrix is a real triangular matrix.

CTRSM Solves, in single-precision arithmetic, a triangular system of equations
where the coefficient matrix is a complex triangular matrix.

ZTRSM Solves, in double-precision arithmetic, a triangular system of equations
where the coefficient matrix is a complex triangular matrix.

9.3 Calling the Subprograms
Each of the BLAS Level 3 subprograms returns a matrix. All the subprograms
are subroutines. They are called as subroutines with a CALL statement. The
example at the end of each subroutine reference description shows the subroutine
call.

9.4 Argument Conventions
Each Level 3 BLAS subroutine has arguments that specify the nature and
requirements of the subroutine. There are no optional arguments.

The arguments are ordered, but not every argument category is needed in each of
the subroutines.

• Arguments specifying matrix options

• Arguments defining the size of the matrices

• Argument specifying the input scalar

• Arguments describing the input matrices

• Argument specifying the input scalar associated with the input-output matrix

• Arguments describing the input-output matrix

9.4.1 Specifying Matrix Options
The arguments that specify matrix options are character arguments:

• side

• trans

• transa

• transb

• uplo

• diag

In Fortran, a character argument can be longer than its corresponding
dummy argument. For example, the value ’ T’ for trans can be passed as
’ TRANSPOSE’ .
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side
The argument side is used in some subroutines to specify whether the matrix
multiplier is on the left or the right. Table 9–3 shows the meaning of the values
for the argument side.

Table 9–3 Values for the Argument SIDE

Value of side Meaning

’ L’ or ’ l’ Multiply the general matrix by the symmetric or triangular
matrix on the left

’ R’ or ’ r’ Multiply the general matrix by the symmetric or triangular
matrix on the right

trans, transa, transb
Arguments transa and transb define the form of the input matrices to use in
an operation. You do not change the form of an input matrix in your application
program. DXML selects the proper elements, depending on the value of the
transa and transb arguments.

For example, if A is the input matrix, and you want to use A in the operation,
set the transa argument to ’ N’ . If you want to use AT in the operation, set the
trans argument to ’ T’ . The subroutine makes the changes and selects the proper
elements from the matrix, so that AT is used. Table 9–4 shows the meaning of
the values for the arguments transa and transb.

Table 9–4 Values for the Arguments transa and transb

Value of
transa and
transb Meaning for transa Meaning for transb

’ N’ or ’ n’ Operate with the matrix A. Operate with the matrix B.

’ T’ or ’ t’ Operate with the transpose
of matrix A.

Operate with the transpose of matrix B.

’ R’ or ’ r’ Operate with the conjugate
of matrix A.

Operate with the conjugate of matrix B.

’ C’ or ’ c’ Operate with the conjugate
transpose of matrix A.

Operate with the conjugate transpose of
matrix B.

When an operation is performed with real matrices, the values ’ T’ , ’ t’ , ’ C’ ,
and ’ c’ have the same meaning, and the values ’ N’ , ’ n’ , ’ R’ , and ’ r’ have the
same meaning.

uplo
The Hermitian, symmetric, and triangular matrix subroutines (HE, SY, and TR
subroutines) use the argument uplo to specify either the upper or lower triangle.
Because of the structure of these matrices, the subroutines do not refer to all of
the matrix values. Table 9–5 shows the meaning of the values for the argument
uplo.
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Table 9–5 Values for the Argument uplo

Value of uplo Meaning

’ U’ or ’ u’ Refers to the upper triangle
’ L’ or ’ l’ Refers to the lower triangle

diag
The triangular matrix (TR) subroutines use the argument diag to specify whether
or not the triangular matrix is unit-triangular. Table 9–6 shows the meaning of
the values for the argument diag.

Table 9–6 Values for the Argument diag

Value of diag Meaning

’ U’ or ’ u’ Unit-triangular
’ N’ or ’ n’ Not unit-triangular

When diag is specified as ’ U’ or ’ u’ , the diagonal elements are not referenced
by the subroutine. These elements are assumed to be unity.

9.4.2 Defining the Size of the Matrices
The sizes of the matrices are defined by the arguments m, n, and k. These
arguments specify the number of rows or columns, m, n, or k of particular
matrices.

You can call a subroutine with arguments m or n equal to 0 but the subroutine
exits immediately without referencing its other arguments. For the _GEMM,
_SYRK, and _HERK subroutines, if k = 0, the operations are reduced to C  �C.

9.4.3 Describing the Matrices
In addition to their size, the description of each matrix is given by two arguments:

• Arguments that specify the array that stores the matrix: a, b, and c specify
the arrays A, B, and C that store the matrices A, B, and C.

• Arguments that specify the leading dimension of each array: lda, ldb, and
ldc specify the leading dimension of the arrays A, B, and C.

9.4.4 Specifying the Input Scalar
The input scalars � and � are always specified by the dummy argument names
alpha and beta.

The input scalar associated with the input-output matrix is normally � and is
specified by the dummy argument name beta.

If you supply an input scalar beta of zero, you do not need to set the array C.
This means that an operation such as C  �AB can be performed without having
to set C to zero in the calling program.
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9.4.5 Invalid Arguments
The following values of Level 3 subroutine arguments are invalid:

• Any value of the arguments side, trans, transa, transb, uplo, or diag that
is not specified for the routine

• m < 0

• n < 0

• k < 0

• lda < the number of rows in the matrix A

• ldb < the number of rows in the matrix B

• ldc < the number of rows in the matrix C

9.5 Error Handling
The BLAS Level 3 subroutines do provide a check of the input arguments. If you
call a Level 3 subroutine with an invalid value for any of its arguments, DXML
reports the message and terminates execution of the program.

The code for BLAS Level 3 subroutines has calls to an input argument error
handler, the XERBLA routine. When a subroutine detects an error, it passes the
name of the subroutine and the number of the first argument that is in error to
the XERBLA routine. DXML directs this information to the device or file defined
as stdout.

9.6 A Look at a Level 3 BLAS Subroutine
The _TRMM subroutines compute a matrix-matrix product for either a triangular
matrix, its transpose, or its conjugate transpose:

B  �AB B  �ATB B  �AHB

B  �BA B  �BAT B  �BAH

The triangular matrix multiply subroutines DTRMM (REAL*8 matrices) and
ZTRMM (COMPLEX*16 matrices) have the following call format:

CALL DTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CALL ZTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

The matrix B is an arbitrary rectangular matrix of size m by n, embedded in a
possibly larger ldb by q matrix. The matrix A is a triangular matrix embedded
in a larger matrix of size lda by p. The triangular part of A is n by n or m by m,
depending on whether A multiplies B on the left side or the right by setting the
argument side.

The lower or upper triangle of A is accessed by setting the argument uplo.
The other triangle of A is ignored. The diagonal of A can be used, or it can be
assumed to be unity by setting the argument diag. Either A, AT , or AH can be
used by setting the argument transa. The scalar � has the same data type as
the matrices A and B.
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For the following real examples, assume A is a 7 by 7 matrix and B is a 6 by 5
matrix: lda = 7, p = 7, ldb = 6, and q = 5:

A =

2
66666664

�10:00 �7:00 �6:00 3:00 6:00 �9:00 8:00
�4:00 5:00 �6:00 2:00 3:00 5:00 1:00
�1:00 �5:00 �4:00 �5:00 �8:00 �9:00 8:00
�5:00 1:00 �7:00 �1:00 3:00 1:00 �8:00
6:00 �2:00 �6:00 �4:00 9:00 2:00 3:00
10:00 0:00 �7:00 �4:00 �1:00 �10:00 3:00
1:00 10:00 6:00 2:00 �4:00 �3:00 2:00

3
77777775

For matrix B, only the leading 4 by 3 rectangle of B will be used: m = 4 and
n = 3:

B =

2
666664

4:00 9:00 2:00 5:00 0:00
�8:00 3:00 9:00 3:00 4:00
4:00 �8:00 0:00 4:00 �9:00
7:00 4:00 8:00 �2:00 0:00
2:00 10:00 �7:00 4:00 5:00
2:00 4:00 �7:00 5:00 �3:00

3
777775

Example 1: REAL*8 Matrices

B  �AB with � = 1:0

We will use the upper 4 by 4 triangle of A and the original diagonal. The matrix
A essentially becomes:

2
64
�10:00 �7:00 �6:00 3:00
0:00 5:00 �6:00 2:00
0:00 0:00 �4:00 �5:00
0:00 0:00 0:00 �1:00

3
75

The call is shown in the following code:

SIDE = ’L’
UPLO = ’U’
TRANSA = ’N’
DIAG = ’N’
CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, 1.0D0, A, LDA, B, LDB)

The product matrix B is as follows:

2
64

13:00 �51:00 �59:00
�50:00 71:00 61:00
�51:00 12:00 �40:00
�7:00 �4:00 �8:00

3
75
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Example 2: REAL*8 Matrices

B  �ATB with � = �2:0
We will use the lower 4 by 4 triangle of A, the original diagonal, and take the
transpose. On entry, the matrix A looks like the following:2

64
�10:00 0:00 0:00 0:00
�4:00 5:00 0:00 0:00
�1:00 �5:00 �4:00 0:00
�5:00 1:00 �7:00 �1:00

3
75

But after the transpose, A becomes:2
64
�10:00 �4:00 �1:00 �5:00
0:00 5:00 �5:00 1:00
0:00 0:00 �4:00 �7:00
0:00 0:00 0:00 �1:00

3
75

The call is shown in the following code:

SIDE = ’L’
UPLO = ’L’
TRANSA = ’T’
DIAG = ’N’
CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, -2.0D0, A, LDA, B, LDB)

The product matrix B is as follows:2
64
94:00 228:00 192:00
106:00 �118:00 �106:00
130:00 �8:00 112:00
14:00 8:00 16:00

3
75

Example 3: REAL*8 Matrices

B  �BA with � = 3:0

Matrix A multiplies matrix B on the right, so that A must be 3 by 3. We take
the lower triangle of A, and we also assume A has unit diagonal. On entry, A is
treated as the following: 2

4 1:00 0:00 0:00
�4:00 1:00 0:00
�1:00 �5:00 1:00

3
5

The call is shown in the following code:

SIDE = ’R’
UPLO = ’L’
TRANSA = ’N’
DIAG = ’U’
CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, 3.0D0, A, LDA, B, LDB)

The product matrix B is as follows:2
64
�102:00 �3:00 6:00
�87:00 �126:00 27:00
108:00 �24:00 0:00
�51:00 �108:00 24:00

3
75
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Example 4: COMPLEX*16 Matrices

B  �BAH with � = (1:0;�2:0):
On entry, A is the following 3 by 3 complex matrix:2

4 (�7:0;�6:0) (2:0; 6:0) (�4:0; 9:0)
(�5:0; 4:0) (�6:0;�4:0) (�10:0;�6:0)
(6:0; 8:0) (�3:0; 8:0) (1:0;�8:0)

3
5

B is the following 4 by 3 complex matrix:

2
64

(8:0;�2:0) (8:0;�9:0) (10:0;�8:0)
(�3:0; 8:0) (3:0;�5:0) (3:0; 4:0)
(�2:0;�6:0) (�6:0;�2:0) (6:0; 2:0)
(0:0; 10:0) (10:0; 0:0) (�6:0;�5:0)

3
75

We will use the upper triangle of A and the original diagonal. The triangular A
effectively looks like the following:2

4 (�7:0;�6:0) (2:0; 6:0) (�4:0; 9:0)
(0:0; 0:0) (�6:0;�4:0) (�10:0;�6:0)
(0:0; 0:0) (0:0; 0:0) (1:0;�8:0)

3
5

After the conjugate transpose, A becomes the following:2
4 (�7:0; 6:0) (0:0; 0:0) (0:0; 0:0)

(2:0;�6:0) (�6:0;�4:0) (0:0; 0:0)
(�4:0;�9:0) (�10:0; 6:0) (1:0; 8:0)

3
5

The call is shown in the following code:

SIDE = ’R’
UPLO = ’U’
TRANSA = ’C’
DIAG = ’N’
ALPHA = (1.0D0, -2.0D0)
CALL ZTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, ALPHA, A, LDA, B, LDB)

The product matrix B is as follows:

2
64
(�318:0; 326:0) (388:0; 354:0) (218:0;�76:0)
(�317:0;�91:0) (�12:0; 124:0) (27:0; 86:0)
(20:0;�40:0) (�20:0; 60:0) (90:0; 70:0)
(�173:0; 66:0) (138:0;�6:0) (�72:0;�121:0)

3
75
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Level 3 BLAS Subroutines

This section provides descriptions of the Level 3 BLAS subroutines for real and
complex operations.

For real operations, A = A and AH = AT .





SGEMA DGEMA CGEMA ZGEMA

SGEMA DGEMA CGEMA ZGEMA
Matrix-Matrix Addition

Format

{S,D,C,Z}GEMA ( transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )

Arguments

transa
character*1
On entry, specifies the form of op(A) as follows:

If transa = ’ N’ or ’ n’ , op(A) = A
If transa = ’ T’ or ’ t’ , op(A) = AT

If transa = ’ R’ or ’ r’ , op(A) = A
If transa = ’ C’ or ’ c’ , op(A) = AH

On exit, transa is unchanged.

transb
character*1
On entry, specifies the form of op(B) as follows:

If transb = ’ N’ or ’ n’ , op(B) = B
If transb = ’ T’ or ’ t’ , op(B) = BT

If transb = ’ R’ or ’ r’ , op(B) = B
If transb = ’ C’ or ’ c’ , op(B) = BH

On exit, transb is unchanged.

m
integer*4
On entry, the number of rows in the matrices op(A), op(B), and C; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns in the matrices op(A), op(B), and C; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by k.
For op(A) = A or A, k = n and the leading m by n part of array A contains the
matrix A.
For op(A) = AT or AH , k = m and the leading n by m part of array A contains the
matrix A.
On exit, a is unchanged.
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lda
integer*4
On entry, specifies the first dimension of array A.
For op(A) = A or A, lda � max(1;m).
For op(A) = AT or AH , lda � max(1; n).
On exit, lda is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with dimensions ldb by k.
For op(B) = B or B, k = n and the leading m by n part of array B contains the
matrix B.
For op(B) = BT or BH , k = m and the leading n by m part of array B contains
the matrix B.

ldb
integer*4
On entry, specifies the first dimension of array B.
For op(B) = B or B, ldb � max(1;m).
For op(B) = BT or BH , ldb � max(1; n).
On exit, ldb is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, an array with the dimension ldc by n.
On exit, the leading m by n part of array C is overwritten by the matrix
� � op(A) + � � op(B).

ldc
integer*4
On entry, specifies the first dimension of array C; ldc�max(1;m).
On exit, ldc is unchanged.

Description

The _GEMA routines perform the following operations:

C � � op(A) + � � op(B)

where op(X) = X;XT ; X; or XH , � and � are scalars, and A, B, and C are
matrices. op(A), op(B), and C are m by n matrices.

These subroutines can also perform the following operation when lda = ldc, and
transa = ’ N’ or ’ n’ , that is, when op(A) = A:

A � � A+ � � op(B)

where op(X) = X;XT ;X; or XH , � and � are scalars, and A and B are m by n
matrices.
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SGEMM DGEMM CGEMM ZGEMM
Matrix-Matrix Product and Addition (Serial and Parallel Versions)

Format

{S,D,C,Z}GEMM ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

Arguments

transa
character*1
On entry, specifies the form of op(A) used in the matrix multiplication:

If transa = ’ N’ or ’ n’ , op(A) = A
If transa = ’ T’ or ’ t’ , op(A) = AT

If transa = ’ R’ or ’ r’ , op(A) = A
If transa = ’ C’ or ’ c’ , op(A) = AH

On exit, transa is unchanged.

transb
character*1
On entry, specifies the form of op(B) used in the matrix multiplication:

If transb = ’ N’ or ’ n’ , op(B) = B
If transb = ’ T’ or ’ t’ , op(B) = BT

If transb = ’ R’ or ’ r’ , op(B) = B
If transb = ’ C’ or ’ c’ , op(B) = BH

m
integer*4
On entry, the number of rows of the matrix op(A) and of the matrix C; m � 0
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix op(B) and of the matrix C; n � 0
On exit, n is unchanged.

k
integer*4
On entry, the number of columns of the matrix op(A) and the number of rows of
the matrix op(B); k � 0
On exit, k is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
For op(A) = A or A, ka � k and the leading m by k portion of the array A contains
the matrix A.
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For op(A) = AT or AH , ka � m and the leading k by m part of the array A
contains the matrix A.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A.
For op(A) = A or A, lda � max(1;m).
For op(A) = AT or AH , lda � max(1; k).
On exit, lda is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array B with dimensions ldb by kb.
For op(B) = B or B, kb � n and the leading k by n portion of the array contains
the matrix B.
For op(B) = (B)T or BH , kb � k and the leading n by k part of the array contains
the matrix B.
On exit, b is unchanged.

ldb
integer*4
On entry, the first dimension of array B.
For op(B) = B or B, ldb � max(1; k).
For op(B) = BT or BH , ldb � max(1; n).
On exit, ldb is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with the dimension ldc by at least n.
On exit, the leading m by n part of array C is overwritten by the matrix
�op(A)op(B) + �C.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1;m)
On exit, ldc is unchanged.

Description

The _GEMM routines perform the following operations:

C  �op(A)op(B) + �C

where op(X) = X;XT ; X; or XH , � and � are scalars, and A, B, and C are
matrices. op(A) is an m by k matrix, op(B) is a k by n matrix, and C is an m by n
matrix.
This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Example

REAL*4 A(20,40), B(20,30), C(40,30), ALPHA, BETA
M = 10
N = 20
K = 15
LDA = 20
LDB = 20
LDC = 40
ALPHA = 2.0
BETA = 2.0
CALL SGEMM (’T’,’N’,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

This Fortran code computes the product C  �ATB + �C where A is a real
general matrix. A is a 15 by 10 real general matrix embedded in array A. B is a
15 by 20 real general matrix embedded in array B. C is a 10 by 20 real general
matrix embedded in array C.
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SGEMS DGEMS CGEMS ZGEMS
Matrix-Matrix Subtraction

Format

{S,D,C,Z}GEMS ( transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )

Arguments

transa
character*1
On entry, specifies the form of op(A) as follows:

If transa = ’ N’ or ’ n’ , op(A) = A
If transa = ’ T’ or ’ t’ , op(A) = AT

If transa = ’ R’ or ’ r’ , op(A) = A
If transa = ’ C’ or ’ c’ , op(A) = AH

On exit, transa is unchanged.

transb
character*1
On entry, specifies the form of op(B) as follows:

If transb = ’ N’ or ’ n’ , op(B) = B
If transb = ’ T’ or ’ t’ , op(B) = BT

If transb = ’ R’ or ’ r’ , op(B) = B
If transb = ’ C’ or ’ c’ , op(B) = BH

On exit, transb is unchanged.

m
integer*4
On entry, the number of rows in the matrices op(A), op(B), and C; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns in the matrices op(A), op(B), and C; m � 0.
On exit, n is unchanged.

alpha
Input real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by k.
For op(A) = A or A, k = n and the leading m by n part of array A contains the
matrix A.
For op(A) = AT or AH , k = m and the leading n by m part of array A contains the
matrix A.
On exit, a is unchanged.
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lda
integer*4
On entry, specifies the first dimension of array A.
For op(A) = A or A, lda � max(1;m).
For op(A) = AT or AH , lda � max(1; n).
On exit, lda is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions ldb by k.
For op(B) = B or B, k = n and the leading m by n part of array B contains the
matrix B.
For op(B) = BT or BH , k = m and the leading n by m part of array B contains
the matrix B.

ldb
integer*4
On entry, specifies the first dimension of array B.
For op(B) = B or B, ldb � max(1;m).
For op(B) = BT or BH , ldb � max(1; n).
On exit, ldb is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with the dimension ldc by at least n.
On exit, the leading m by n part of array C is overwritten by the matrix
� � op(A)� � � op(B).

ldc
integer*4
On entry, specifies the first dimension of array C; ldc�max(1;m).
On exit, ldc is unchanged.

Description

The _GEMS routines perform one of the following matrix-matrix operations:

C � � op(A)� � � op(B)

where op(X) = X;XT ; X; or X
T , � and � are scalars, and A, B, and C are

matrices. op(A), op(B), and C are m by n matrices.

These subroutines can also perform the following operation when lda = ldc, and
transa = ’ N’ or ’ n’ , that is, when op(A) = A:

A � � A� � � opB

where op(X) = X;XT ;X; or XH , � and � are scalars, and A and B are m by n
matrices.
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SGEMT DGEMT CGEMT ZGEMT
Matrix-Matrix Copy

Format

{S,D,C,Z}GEMT ( trans, m, n, alpha, a, lda, b, ldb )

Arguments

trans
character*1
On entry, specifies the form of op(A) as follows:

When trans = ’ N’ or ’ n’ , op(A) = A
When trans = ’ T’ or ’ t’ , op(A) = AT

When trans = ’ R’ or ’ r’ , op(A) = A
When trans = ’ C’ or ’ c’ , op(A) = AH

On exit, trans is unchanged.

m
integer*4
On entry, the number of rows in the matrices op(A) and B; m � 0.
On exit, m is unchanged.

n
integer*4
On entry, the number of columns in the matrices op(A), and B; n � 0.
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by k.
For op(A) = A or A, k = n and the leading m by n part of array A contains the
matrix A.
For op(A) = AT or AH , k = m and the leading n by m part of array A contains the
matrix A.
On exit, a is unchanged.

lda
integer*4
On entry, specifies the first dimension of array A.
For op(A) = A or A, lda � max(1;m).
For op(A) = AT or AH , lda � max(1; n).
On exit, lda is unchanged.
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b
real*4 | real*8 | complex*8 | complex*16
On entry, an array with dimensions ldb by n.
On exit, the leading m by n part of the array B is overwritten by the matrix
� � op(A).

ldb
integer*4
On entry, specifies the first dimension of array B; ldb � max(1;m).
On exit, ldb is unchanged.

Description

The _GEMT routines perform the following operation:

B � � op(A)

op(X) = X;XT ; X; or X
T , � is a scalar, and A and B are matrices. op(A) and B

are m by n matrices.

These subroutines can also perform matrix scaling when lda = ldb, and
trans = ’ N’ , ’ n’ , ’ R’ , or ’ r’ :

A � � op(A)

where op(X) = X or X, � is a scalar, and A and op(A) are m by n matrices.

An in place matrix transpose or conjugate transpose may be performed when
lda = ldb, trans = ’ T’ , ’ t’ , ’ C’ , or ’ c’ , and m = n:

A � � op(A)
where op(X) = XT or XH , � is a scalar, and A and op(A) are m by n matrices.
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SSYMM DSYMM CSYMM ZSYMM CHEMM ZHEMM
Matrix-Matrix Product and Addition for a Symmetric or Hermitian
Matrix

Format

{S,D,C,Z}SYMM ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

{C,Z}HEMM ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

Arguments

side
character*1
On entry, specifies whether the symmetric matrix A multiplies B on the left side
or the right side:

If side = ’ L’ or ’ l’ , the operation is C  �AB + �C.
If side = ’ R’ or ’ r’ , the operation is C  �BA+ �C.

On exit, side is unchanged.

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the symmetric
matrix A is referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of A is referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of A is referenced.

On exit, uplo is unchanged.

m
integer*4
On entry, the number of rows of the matrix C; m � 0
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix C; n � 0
On exit, n is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
If the multiplication is on the left side, ka � m and the leading m by m part of
the array contains the matrix A.
If the multiplication is on the right side, ka � n and the leading n by n part of
the array A must contain the matrix A.
In either case, when the leading part of the array is specified as the upper part,
the upper triangular part of array A contains the upper-triangular part of the
matrix A, and the lower-triangular part of matrix A is not referenced. When
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the lower part is specified, the lower triangular part of the array A contains the
lower triangular part of the matrix A, and the upper-triangular part of A is not
referenced.

In complex Hermitian matrices, the imaginary parts of the diagonal elements
need not be initialized. They are assumed to be zero.

On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A. When multiplication is on the left,
lda � max(1;m). When multiplication is on the right, lda � max(1;n).
On exit, lda is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array B of dimensions ldb by at least n. The leading
m by n part of the array B must contain the matrix B.
On exit, b is unchanged.

ldb
integer*4
On entry, the first dimension of B; ldb � max(1;m)
On exit, ldb is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array with the dimension ldc by at least n.
On exit, c is overwritten; the array C is overwritten by the m by n updated
matrix.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1; n)
On exit, ldc is unchanged.

Description

These routines compute a matrix-matrix product and addition for a real or
complex symmetric matrix or a complex Hermitian matrix:

C  �AB + �C

C  �BA+ �C

� and � are scalars, A is the symmetric or Hermitian matrix, and B and C are m
by n matrices.
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Example

REAL*4 A(20,20), B(30,40), C(30,50), ALPHA, BETA
M = 10
N = 20
LDA = 20
LDB = 30
LDC = 30
ALPHA = 2.0
BETA = 3.0
CALL SSYMM (’L’,’U’,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

This Fortran code computes the product of a symmetric matrix and a rectangular
matrix. The operation is C  �AB + �C where A is a 10 by 10 real symmetric
matrix embedded in array A, B is a 10 by 20 real matrix embedded in array
B, and C is a 10 by 20 real matrix embedded in array C. The leading 10 by 10
upper-triangular part of the array A contains the upper-triangular part of the
matrix A. The lower-triangular part of A is not referenced.

COMPLEX*16 A(30,40), B(15,20), C(19,13), ALPHA, BETA
M = 12
N = 7
LDA = 30
LDB = 15
LDC = 19
ALPHA = (2.0D0, 0.0D0)
BETA = (0.0D0, -2.0D0)
CALL ZHEMM (’R’,’L’,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

This Fortran code computes the product of a Hermitian matrix and a rectangular
matrix. The operation is C  �BA + �C where A is a 7 by 7 complex Hermitian
matrix embedded in array A, B is a 12 by 7 complex matrix embedded in array
B, and C is a 12 by 7 complex matrix embedded in array C. The leading 7 by
7 lower-triangular part of the array A contains the lower-triangular part of the
matrix A. The upper-triangular part of A is not referenced.
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SSYRK DSYRK CSYRK ZSYRK
Rank-k Update of a Symmetric Matrix

Format

{S,D,C,Z}SYRK ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the symmetric
matrix C is to be referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of C is to be referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of C is to be referenced.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , C  �AAT + �C
If trans = ’ T’ or ’ t’ , C  �ATA+ �C

On exit, trans is unchanged.

n
integer*4
On entry, specifies the order of the matrix C; n � 0
On exit, n is unchanged.

k
integer*4
On entry, the number of columns of the matrix A when trans = ’ N’ or ’ n’ , or
the number of rows of the matrix A when trans = ’ T’ or ’ t’ ; k � 0.
On exit, k is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
For trans = ’ N’ or ’ n’ , ka � k and the leading n by k portion of the array A
contains the matrix A.
For trans = ’ T’ or ’ t’ , ka � n and the leading k by n part of the array A contains
the matrix A.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A.
For trans = ’ N’ or ’ n’ , lda � max(1; n).
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For trans = ’ T’ , ’ t’ , ’ C’ or ’ c’ , lda � max(1; k).
On exit, lda is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array C of dimensions ldc by at least n. If uplo
specifies the upper part, the leading n by n upper-triangular part of the array
C must contain the upper-triangular part of the symmetric matrix C, and the
strictly lower-triangular part of C is not referenced.

If uplo specifies the lower part, the leading n by n lower-triangular part of the
array C must contain the lower-triangular part of the symmetric matrix C, and
the strictly upper-triangular part of C is not referenced.
On exit, c is overwritten; the triangular part of the array C is overwritten by the
triangular part of the updated matrix.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1; n)
On exit, ldc is unchanged.

Description

The _SYRK routines perform the rank-k update of a symmetric matrix:

C  �AAT + �C

C  �ATA+ �C

� and � are scalars, C is an n by n symmetric matrix. In the first case, A is an n
by k matrix, and in the second case, A is a k by n matrix.

Example

REAL*4 A(40,20), C(20,20), ALPHA, BETA
LDA = 40
LDC = 20
N = 10
K = 15
ALPHA = 1.0
BETA = 2.0
CALL SSYRK (’U’,’N’,N,K,ALPHA,A,LDA,BETA,C,LDC)

This Fortran code computes the rank-k update of the real symmetric matrix C:
C  �AAT + �C. C is a 10 by 10 matrix, and A is a 10 by 15 matrix. Only the
upper-triangular part of C is referenced. The leading 10 by 15 part of array A
contains the matrix A. The leading 10 by 10 upper-triangular part of array C
contains the upper-triangular matrix C.
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CHERK, ZHERK
Rank-k Update of a Complex Hermitian Matrix

Format

{C,Z}HERK ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the Hermitian
matrix C is to be referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of C is to be referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of C is to be referenced.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , C  �AAH + �C
If trans = ’ C’ or ’ c’ , C  �AHA+ �C

On exit, trans is unchanged.

n
integer*4
On entry, the order of the matrix C; n � 0
On exit, n is unchanged.

k
integer*4
On entry, the number of columns of the matrix A when trans = ’ N’ or ’ n’ , or
the number of rows of the matrix A when trans = ’ C’ or ’ c’ ; k � 0.
On exit, k is unchanged.

alpha
real*4 | real*8
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
For trans = ’ N’ or ’ n’ , ka � k and the leading n by k portion of the array A
contains the matrix A.
For trans = ’ T’ , ’ t’ , ’ C’ , or ’ c’ , ka � n and the leading k by n part of the array
A contains the matrix A.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of array A.
For trans = ’ N’ or ’ n’ lda � max(1; n).
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For trans = ’ C’ or ’ c’ , lda � max(1; k).
On exit, lda is unchanged.

beta
real*4 | real*8
On entry, the scalar �.
On exit, beta is unchanged.

c
complex*8 | complex*16
On entry, a two-dimensional array C of dimensions ldc by at least n.

If uplo specifies the upper part, the leading n by n upper-triangular part of the
array C must contain the upper-triangular part of the Hermitian matrix C, and
the strictly lower-triangular part of C is not referenced.

If uplo specifies the lower part, the leading n by n lower-triangular part of the
array C must contain the lower-triangular part of the Hermitian matrix C, and
the strictly upper-triangular part of C is not referenced.

The imaginary parts of the diagonal elements need not be initialized. They are
assumed to be 0, and on exit, they are set to 0.
On exit, c is overwritten; the triangular part of the array C is overwritten by the
triangular part of the updated matrix.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1; n)
On exit, ldc is unchanged.

Description

CHERK and ZHERK perform the rank-k update of a complex Hermitian matrix:

C  �AAH + �C

C  �AHA+ �C

� and � are real scalars, C is an n by n Hermitian matrix, and A is an n by k
matrix in the first case and a k by n matrix in the second case.

Example

COMPLEX*8 A(40,20), C(20,20)
REAL*4 ALPHA, BETA
LDA = 40
LDC = 20
N = 10
K = 15
ALPHA = 1.0
BETA = 2.0
CALL CHERK (’U’,’N’,N,K,ALPHA,A,LDA,BETA,C,LDC)

This Fortran code computes the rank-k update of the complex Hermitian matrix
C: C  �AAH + �C. C is a 10 by 10 matrix, and A is a 10 by 15 matrix. Only
the upper-triangular part of C is referenced. The leading 10 by 15 part of array
A contains the matrix A. The leading 10 by 10 upper-triangular part of array C
contains the upper-triangular matrix C.
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SSYR2K DSYR2K CSYR2K ZSYR2K
Rank-2k Update of a Symmetric Matrix

Format

{S,D,C,Z}SYR2K ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the symmetric
matrix C is to be referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of C is to be referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of C is to be referenced.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , C  �ABT + �BAT + �C
If trans = ’ T’ or ’ t’ , C  �ATB + �BTA+ �C

On exit, trans is unchanged.

n
integer*4
On entry, the order n of the matrix C; n � 0
On exit, n is unchanged.

k
integer*4
On entry, the number of columns of the matrices A and B when trans = ’ N’

or ’ n’ , or the number of rows of the matrix A and B when trans = ’ T’ or ’ t’ :
k � 0.
On exit, k is unchanged.

alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
For trans = ’ N’ or ’ n’ , ka � k and the leading n by k portion of the array A
contains the matrix A.
For trans = ’ T’ or ’ t’ , ka � n and the leading k by n part of the array A contains
the matrix A.
On exit, a is unchanged.
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lda
integer*4
On entry, the first dimension of array A.
For trans = ’ N’ or ’ n’ lda � max(1; n).
For trans = ’ T’ or ’ t’ , lda � max(1; k).
On exit, lda is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array B with dimensions ldb by kb.
For trans = ’ N’ or ’ n’ , kb � k and the leading n by k portion of the array B
contains the matrix B.
For trans = ’ T’ or ’ t’ , kb � n and the leading k by n part of the array B contains
the matrix B.
On exit, b is unchanged.

ldb
integer*4
On entry, the first dimension of array B.
For trans = ’ N’ or ’ n’ , ldb � max(1; n).
For trans = ’ T’ or ’ t’ , ldb � max(1; k).
On exit, ldb is unchanged.

beta
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, beta is unchanged.

c
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array C of dimensions ldc by at least n.

If uplo specifies the upper part, the leading n by n upper-triangular part of the
array C must contain the upper-triangular part of the symmetric matrix C, and
the strictly lower-triangular part of C is not referenced.

If uplo specifies the lower part, the leading n by n lower-triangular part of the
array C must contain the lower-triangular part of the symmetric matrix C, and
the strictly upper-triangular part of C is not referenced.
On exit, c is overwritten; the triangular part of the array C is overwritten by the
triangular part of the updated matrix.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1; n)
On exit, ldc is unchanged.

Description

The _SYR2K routines perform the rank-2k update of a symmetric matrix:

C  �ABT + �BAT + �C

C  �ATB + �BTA+ �C

� and � are scalars, C is an n by n symmetric matrix, and A and B are n by k
matrices in the first case and k by n matrices in the second case.
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Example

REAL*4 A(40,10), B(40,10), C(20,20), ALPHA, BETA
LDA = 40
LDB = 30
LDC = 20
N = 18
K = 10
ALPHA = 1.0
BETA = 2.0
CALL SSYR2K (’U’,’N’,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

This Fortran code computes the rank-2k update of the real symmetric matrix C:
C  �ABT + �BAT + �C. Only the upper-triangular part of C is referenced. The
leading 18 by 10 part of array A contains the matrix A. The leading 18 by 10 part
of array B contains the matrix B. The leading 18 by 18 upper-triangular part of
array C contains the upper-triangular matrix C.
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CHER2K, ZHER2K
Rank-2k Update of a Complex Hermitian Matrix

Format

{C,Z}HER2K ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

Arguments

uplo
character*1
On entry, specifies whether the upper- or lower-triangular part of the Hermitian
matrix C is to be referenced:

If uplo = ’ U’ or ’ u’ , the upper-triangular part of C is to be referenced.
If uplo = ’ L’ or ’ l’ , the lower-triangular part of C is to be referenced.

On exit, uplo is unchanged.

trans
character*1
On entry, specifies the operation to be performed:

If trans = ’ N’ or ’ n’ , C  �ABH + �BAH + �C
If trans = ’ C’ or ’ c’ , C  �AHB + �BHA+ �C

On exit, trans is unchanged.

n
integer*4
On entry, the order of the matrix C; n � 0
On exit, n is unchanged.

k
integer*4
On entry, the number of columns of the matrices A and B when trans = ’ N’ or
’ n’ , or the number of rows of the matrices A and B when trans = ’ C’ or ’ c’ ;
k � 0.
On exit, k is unchanged.

alpha
complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by ka.
For trans = ’ N’ or ’ n’ , ka � k and the leading n by k portion of the array A
contains the matrix A.
For trans = ’ C’ or ’ c’ , ka � n and the leading k by n part of the array A
contains the matrix A.
On exit, a is unchanged.
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lda
integer*4
On entry, the first dimension of array A.
For trans = ’ N’ or ’ n’ , lda � max(1; n).
For trans = ’ C’ or ’ c’ , lda � max(1; k).
On exit, lda is unchanged.

b
complex*8 | complex*16
On entry, a two-dimensional array B with dimensions ldb by kb.
For trans = ’ N’ or ’ n’ , kb � k and the leading n by k portion of the array B
contains the matrix B.
For trans = ’ C’ or ’ c’ , kb � n and the leading k by n part of the array B contains
the matrix B.
On exit, b is unchanged.

ldb
integer*4
For trans = ’ N’ or ’ n’ ldb � max(1; n).
For trans = ’ C’ or ’ c’ , ldb � max(1; k).
On exit, ldb is unchanged.

beta
real*4 | real*8
On entry, specifies the scalar �.
On exit, beta is unchanged.

c
complex*8 | complex*16
On entry, a two-dimensional array C of dimensions ldc by at least n.

If uplo specifies the upper part, the leading n by n upper-triangular part of the
array C must contain the upper-triangular part of the Hermitian matrix C, and
the strictly lower-triangular part of C is not referenced.

If uplo specifies the lower part, the leading n by n lower-triangular part of the
array C must contain the lower-triangular part of the Hermitian matrix C, and
the strictly upper-triangular part of C is not referenced.

The imaginary parts of the diagonal elements need not be initialized. They are
assumed to be 0, and on exit, they are set to 0.

On exit, c is overwritten; the triangular part of the array C is overwritten by the
triangular part of the updated matrix.

ldc
integer*4
On entry, the first dimension of array C; ldc � max(1; n)
On exit, ldc is unchanged.
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Description

CHER2K and ZHER2K perform the rank-2k update of a complex Hermitian
matrix:

C  �ABH + �BAH + �C

C  �AHB + �BHA+ �C

where � is a complex scalar, � is a real scalar, and C is an n by n Hermitian
matrix. In the first case, A and B are n by k matrices, and in the second case,
they are k by n matrices.

Example

COMPLEX*8 A(40,10), B(40,10), C(20,20), ALPHA
REAL*4 BETA
LDA = 40
LDB = 30
LDC = 20
N = 18
K = 10
ALPHA = (1.0, 1.0)
BETA = 2.0
CALL CHER2K (’U’,’N’,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

This Fortran code computes the rank-2k update of the complex Hermitian matrix
C: C  �ABH + �BAH + �C. Only the upper-triangular part of C is referenced.
The leading 18 by 10 part of array A contains the matrix A. The leading 18 by
10 part of array B contains the matrix B. The leading 18 by 18 upper-triangular
part of array C contains the upper-triangular matrix C.
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STRMM DTRMM CTRMM ZTRMM
Matrix-Matrix Product for Triangular Matrix

Format

{S,D,C,Z}TRMM ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

Arguments

side
character*1
On entry, specifies whether op(A) multiplies B on the left or right in the
operation:

If side = ’ L’ or ’ l’ , the operation is B  � � op(A)B.
If side = ’ R’ or ’ r’ , the operation is B  � �Bop(A).

On exit, side is unchanged.

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , the matrix A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , the matrix A is a lower-triangular matrix.

On exit, uplo is unchanged.

transa
character*1
On entry, specifies the form of op(A) used in the matrix multiplication:

If transa = ’ N’ or ’ n’ , op(A) = A.
If transa = ’ T’ or ’ t’ , op(A) = AT .
If transa = ’ C’ or ’ c’ , op(A) = AH .

On exit, transa is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

m
integer*4
On entry, the number of rows of the matrix B; m � 0
On exit, m is unchanged.

n
integer*4
On entry, the number of columns of the matrix B; n � 0
On exit, n is unchanged.
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alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by k.
If the multiplication is on the left side, k � m and the leading m by m part of the
array contains the matrix A.
If the multiplication is on the right side, k � n and the leading n by n part of the
array A must contain the matrix A.
In either case, when the leading part of the array is specified as the upper part,
the upper triangular part of array A contains the upper-triangular part of the
matrix A, and the lower-triangular part of matrix A is not referenced. When
the lower part is specified, the lower triangular part of the array A contains the
lower triangular part of the matrix A, and the upper-triangular part of A is not
referenced.

If matrix A is unit-triangular, its diagonal elements are assumed to be unity and
are not referenced.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of A. When multiplication is on the left,
lda � max(1;m). When multiplication is on the right, lda � max(1; n).
On exit, lda is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array B of dimensions ldb by at least n. The leading
m by n part of the array B must contain the matrix B.
On exit, b is overwritten by the m by n updated matrix.

ldb
integer*4
On entry, the first dimension of B; ldb � max(1;m)
On exit, ldb is unchanged.

Description

STRMM and DTRMM compute a matrix-matrix product for a real triangular
matrix or its transpose. CTRMM and ZTRMM compute a matrix-matrix product
for a complex triangular matrix, its transpose, or its conjugate transpose.

B  �op(A)B

B  �B(op(A))

where op(A) = A;AT ; or AH

� is a scalar, B is an m by n matrix, and A is a unit or non-unit, upper- or
lower-triangular matrix.
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Example

REAL*8 A(25,40), B(30,35), ALPHA
M = 15
N = 18
LDA = 25
LDB = 30
ALPHA = -1.0D0
CALL DTRMM (’R’,’L’,’T’,’U’,M,N,ALPHA,A,LDA,B,LDB)

This Fortran code solves the system B  �BAT where A is a lower-triangular
real matrix with a unit diagonal. A is an 18 by 18 real triangular matrix
embedded in array A, and B is a 15 by 18 real rectangular matrix embedded in
array B. The leading 18 by 18 lower-triangular part of the array A must contain
the lower-triangular matrix A. The upper-triangular part of A and the diagonal
are not referenced.

COMPLEX*16 A(25,40), B(30,35), ALPHA
M = 15
N = 18
LDA = 25
LDB = 30
ALPHA = (-1.0D0, 2.0D0)
CALL ZTRMM (’R’,’L’,’T’,’U’,M,N,ALPHA,A,LDA,B,LDB)

This Fortran code solves the system B  �BAT where A is a lower-triangular
complex matrix with a unit diagonal. A is an 18 by 18 complex triangular matrix
embedded in array A, and B is a 15 by 18 complex rectangular matrix embedded
in array B. The leading 18 by 18 lower-triangular part of the array A must
contain the lower-triangular matrix A. The upper-triangular part of A and the
diagonal are not referenced.
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STRSM DTRSM CTRSM ZTRSM
Solve a Triangular System of Equations with a Triangular Coefficient
Matrix

Format

{S,D,C,Z}TRSM ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

Arguments

side
character*1
On entry, specifies whether op(A) is on the left side or the right side of X in the
system of equations:

If side = ’ L’ or ’ l’ , the system is op(A)X = �B.
If side = ’ R’ or ’ r’ , the system is Xop(A) = �B.

On exit, side is unchanged.

uplo
character*1
On entry, specifies whether the matrix A is an upper- or lower-triangular matrix:

If uplo = ’ U’ or ’ u’ , the matrix A is an upper-triangular matrix.
If uplo = ’ L’ or ’ l’ , the matrix A is a lower-triangular matrix.

On exit, uplo is unchanged.

transa
character*1
On entry, specifies the form of op(A) used in the system of equations:

If transa = ’ N’ or ’ n’ , op(A) = A.
If transa = ’ T’ or ’ t’ , op(A) = AT .
If transa = ’ C’ or ’ c’ , op(A) = AH .

On exit, transa is unchanged.

diag
character*1
On entry, specifies whether the matrix A is unit-triangular:

If diag = ’ U’ or ’ u’ , A is a unit-triangular matrix.
If diag = ’ N’ or ’ n’ , A is not a unit-triangular matrix.

On exit, diag is unchanged.

m
integer*4
On entry, the number of rows m of the matrix B; m � 0
On exit, m is unchanged.

n
integer*4
On entry, the number of columns n of the matrix B; n � 0
On exit, n is unchanged.
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alpha
real*4 | real*8 | complex*8 | complex*16
On entry, specifies the scalar �.
On exit, alpha is unchanged.

a
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array A with dimensions lda by k.
If the multiplication is on the left side, k � m and the leading m by m part of the
array contains the matrix A.
If the multiplication is on the right side, k � n and the leading n by n part of the
array A must contain the matrix A.
In either case, when the leading part of the array is specified as the upper part,
the upper triangular part of array A contains the upper-triangular part of the
matrix A, and the lower-triangular part of matrix A is not referenced. When
the lower part is specified, the lower triangular part of the array A contains the
lower triangular part of the matrix A, and the upper-triangular part of A is not
referenced.

If matrix A is unit-triangular, its diagonal elements are assumed to be unity and
are not referenced.
On exit, a is unchanged.

lda
integer*4
On entry, the first dimension of A. When multiplication is on the left,
lda � max(1;m). When multiplication is on the right, lda � max(1; n).
On exit, lda is unchanged.

b
real*4 | real*8 | complex*8 | complex*16
On entry, a two-dimensional array B of dimensions ldb by at least n. The leading
m by n part of the array B must contain the right-hand-side matrix B.
On exit, b is overwritten by the m by n solution matrix X.

ldb
integer*4
On entry, the first dimension of B; ldb � max(1;m)
On exit, ldb is unchanged.

Description

The _TRSM routines solve a triangular system of equations where the coefficient
matrix A is a triangular matrix:

op(A)X = �B

Xop(A) = �B

op(A) = A;AT ; or AH , � is a scalar, X and B are m by n matrices, and A is a unit
or non-unit, upper- or lower-triangular matrix.
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Example

REAL*8 A(100,40), B(40,20), ALPHA
M = 16
N = 18
LDA = 100
LDB = 40
ALPHA = 2.0D0
CALL DTRSM (’L’,’U’,’N’,’U’,M,N,ALPHA,A,LDA,B,LDB)

This Fortran code solves the system AX = �B where A is an upper-triangular
real matrix with a unit diagonal. X and B are 16 by 18 matrices. The leading
16 by 16 upper-triangular part of the array A must contain the upper-triangular
matrix A. The leading 16 by 18 part of the array B must contain the matrix B.
The lower-triangular part of A and the diagonal are not referenced. The leading
16 by 18 part of B is overwritten by the solution matrix X.
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10
Using LAPACK Subprograms

LAPACK is a collection of Fortran 77 routines written to solve a wide array of
problems in applied linear algebra. These routines provide DXML users with
state of the art tools for linear equation solutions, eigenvalue problems, and
linear least squares problems.

The routines are intended by their developers (at major government labs and
research universities) to replace and expand the functionality of the famous
LINPACK and EISPACK routines.

LAPACK provides enhancements in speed, primarily by utilizing blocked
algorithms and the highly optimized DXML BLAS Level 3 and other BLAS
routines. The collection also provides better accuracy and robustness than the
LINPACK and EISPACK packages. Additionally, two LAPACK computational
routines, {C,D,S,Z}GETRF and {C,D,S,Z}POTRF, have been parallelized for
improved performance on multiprocessor systems. See Chapter 4 for information
about using the DXML parallel library. The first public release of LAPACK,
Version 1.0, was on February 29, 1992. LAPACK Version 2.0 was released on
September 30, 1994 and is part of DXML.

This chapter provides information about the following topics:

• Overview of LAPACK (Section 10.1)

• Naming conventions and mnemonics (Section 10.2)

• A summary of LAPACK driver routines (Section 10.3)

• An example of how LAPACK is used (Section 10.4)

• How to experiment with performance parameters (Section 10.5)

To use LAPACK, you must purchase the LAPACK documentation, published in
book form, by the Society for Industrial and Applied Math (SIAM) in 1995:

LAPACK Users’ Guide, 2nd Edition, by E. Anderson et al,
SIAM
3600 University City Science Center
Philadelphia PA 19104-2688
ISBN 0-89871-345-5
Tel: 1-800-447-SIAM
FAX: 1-215-386-7999
email: service@siam.org

Information on ordering SIAM books, including the LAPACK Users’ Guide, is also
available through the World Wide Web at ‘‘http://www.siam.org.’’

You can display the html version of the LAPACK Users’ Guide on the Internet
through a mosaic interface by using the url:

http://www.netlib.org/lapack/lug/lapack_lug.html
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A quick reference card for all the driver routines is included with SIAM’s
LAPACK Users’ Guide.

The LAPACK project is currently centered at the University of Tennessee.
Information on software releases, corrections to the user guide, and other
information can be obtained by sending the following one-line message to
netlib@ornl.gov :

send release_notes from lapack

The DXML release notes indicate the version of LAPACK included in the DXML
product.

10.1 Overview
The computational tasks carried out by the LAPACK routines play an essential
role in solving problems arising in virtually every area of scientific computation,
simulation, or mathematical modeling. Optimal performance of the LAPACK
routines is assured by the inclusion of high performance BLAS (particularly
BLAS Level 3) as part of the DXML library, and the automatic choice of suitable
blocking parameters.

The major capabilities provided by LAPACK include:

• Solution of linear systems of equations, that is, solving:

Ax = b

where A is a square matrix, and x and b are vectors.

• Solution of eigenvalue/eigenvector problems, that is, solving:

Ax = � � x

or
Ax = � �B � x

for either � and/or x. Routines for more general eigenproblems and matrix
factorizations involving eigenproblems are also provided.

• Solution of overdetermined systems by means of modern least squares
methods including singular value decomposition. These problems involve
linear systems of equations where A typically has many more rows than
columns (so there are many more equations than unknowns).

Most of the capabilities in LAPACK are provided for several storage formats (full
matrix, banded, packed symmetric, and so on). Consult SIAM’s LAPACK Users’
Guide for a complete description of LAPACK capabilities, including algorithm
descriptions and further references.
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10.2 Naming Conventions
LAPACK routine names have single letter prefixes indicating the precision (data
type) of the input and/or output data:

Mnemonic Meaning

S real*4, single-precision

D real*8, double-precision

C complex*8, single-precision

Z complex*16, double-precision

The LAPACK driver and computational (top level) routines always have names of
the form:

_MMFF
_MMFFX

The underscore character ( _ ) is one of the prefixes {S,D,C,Z}. MMis a two-letter
code indicating the matrix type, that is, its storage and/or mathematical property.
FF is a code of two or three letters indicating the type of mathematical task being
performed. The letter X as the last letter on a routine name, indicates an expert
driver routine, that is, a more sophisticated version of an existing routine which
either uses or computes additional information about the problem, for example,
condition numbers or error estimates.

Table 10–1 lists the mnemonics and their meaning used for the mmcode.
alphabetical order - this change needs to be done in next VMS release also.)

Table 10–1 Naming Conventions: Mnemonics for MM

Mnemonic Meaning

GB General band matrix

GE General matrix

GG General matrices, generalized problems (i.e. a pair of general matrices)

GT General tridiagonal

HB (Complex) Hermitian band

HE Hermitian indefinite (C, Z prefixes only)

HP Hermitian indefinite, packed storage (C,Z prefixes only)

PB Positive definite, either symmetric or Hermitian, banded storage

PO Positive definite, either symmetric or Hermitian

PP Positive definite, either symmetric or Hermitian, packed storage

PT Positive definite, either symmetric or Hermitian, tridiagonal

SB (Real) symmetric band

SP Symmetric indefinite, packed storage (S, D prefixes only)

ST Symmetric tridiagonal

SY Symmetric indefinite (S, D prefixes), or complex symmetric (C, Z prefixes)

Table 10–2 lists the mnemonics for the driver routines and their meaning.
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Table 10–2 Naming Conventions: Mnemonics for FF

Mnemonic Meaning

ES Eigenvalues and Schur decomposition

EV Eigenvalues and/or vectors

GLM Generalized linear regression model

GS Generalized eigenvalues, Schur form, and/or Schur vectors

GV Generalized eigenvalues, and/or generalized eigenvectors

LS Least squares solution, orthogonal factorization (general matrix only)

LSS Least squares solution, singular value decomposition (general matrix only)

LSE Least squares solution, Eigenvalues

SV Linear system solutions

SVD Singular value decomposition

Subprograms that provide linear system solutions use SV in the ff portion of
their names. Thus, the simple driver routines for this task all have names of the
form:

{S,D,C,Z}mmSV.

For example, to solve a general linear system with complex input data, you need
to call CGESV.

To find the eigenvalues and (optionally) eigenvectors of a general complex
Hermitian matrix stored in single precision, you need to call CHEEV.

The generalized eigenvalue routines involve problems of the form:

A � x = � �B � x

The mnemonics for the mathematical task are GV (generalized eigenvalue/vector),
or GS (generalized Schur factorization).

10.3 Summary of LAPACK Driver Subroutines
Table 10–3 lists simple driver routines for eigenvalue and singular value
problems, linear equation solvers and linear least square problems.

Table 10–3 Simple Driver Routines

Routine Function

Eigenvalue and Singular Value Problems

SSYEV
DSYEV
CHEEV
ZHEEV

Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
matrix.

SSPEV
DSPEV
CHPEV
ZHPEV

Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
matrix in packed storage.

(continued on next page)
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Table 10–3 (Cont.) Simple Driver Routines

Routine Function

Eigenvalue and Singular Value Problems

SSBEV
DSBEV
CHBEV
ZHBEV

Computes all eigenvalues and eigenvectors of a symmeric/Hermitian band
matrix.

SSTEV
DSTEV

Computes all eigenvalues and eigenvectors of a real symmetric tridiagonal
matrix.

SGEES
DGEES
CGEES
ZGEES

Computes the eigenvalues and Schur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of
the Schur form.

SGEEV
DGEEV
CGEEV
ZGEEV

Computes the eigenvalues and left and right eigenvectors of a general
matrix.

SGESVD
DGESVD
CGESVD
ZGESVD

Computes the singular value decomposition (SVD) of a general rectangular
matrix.

SSYGV
DSYGV
CHEGV
ZHEGV

Computes all eigenvalues and the eigenvectors of a generalized symmetric
/Hermitian-definite generalized eigenproblem, Ax = �Bx, or BAx = �x.

SSPGV
DSPGV
CHPGV
ZHPGV

Computes all eigenvalues and eigenvectors of a generalized symmetric
/Hermitian-definite generalized eigenproblem, Ax = �Bx, or BAx = �x,
where A and B are in packed storage.

SSBGV
CHBGV

Computes all eigenvalues and eigenvectors of a generalized symmetric
/Hermitian-definite and banded eigenproblem, Ax = �Bx, or BAx = �x.

SGEGS
DGEGS
CGEGV
ZGEGV

Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors for a pair of nonsymmetric matrices.

SGGSVD
DGGSVD
CGGSVD
ZGGSVD

Computes the generalized singular value decomposition.

(continued on next page)
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Table 10–3 (Cont.) Simple Driver Routines

Routine Function

Linear Equation Problems

SGESV
DGESV
CGESV
ZGESV

Solves a general system of linear equations AX=B.

SGBSV
DGBSV
CGBSV
ZGBSV

Solves a general banded system of linear equations AX=B.

SGTSV
DGTSV
CGTSV
ZGTSV

Solves a general tridiagonal system of linear equations AX=B.

SPOSV
DPOSV
CPOSV
ZPOSV

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B.

SPPSV
DPPSV
CPPSV
ZPPSV

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, where A is held in packed storage.

SPBSV
DPBSV
CPBSV
ZPBSV

Solves a symmetric/Hermitian positive definite banded system of linear
equations AX=B.

SPTSV
DPTSV
CPTSV
ZPTSV

Solves a symmetric/Hermitian positive definite tridiagonal system of linear
equations AX=B.

SSYSV
DSYSV
CSYSV
ZSYSV
CHESV
ZHESV

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B.

SSPSV
DSPSV
CSPSV
ZSPSV
CHPSV
ZHPSV

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, where A is held in packed storage.

(continued on next page)
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Table 10–3 (Cont.) Simple Driver Routines

Routine Function

Linear Least Squares Problems

SGELS
DGELS
CGELS
ZGELS

Computes the least squares solution to an over-determined system of
linear equations, AX=B or A**H X=B, or the minimum norm solution of an
under-determined system, where A is a general rectangular matrix of full
rank, using a QR or LQ factorization of A.

SGELSS
DGELSS
CGELSS
ZGELSS

Computes the minimum norm least squares solution to an over-determined
or under-determined system of linear equations AX=B, using the singular
value decomposition of A.

SGGGLM
DGGGLM
CGGGLM
ZGGGLM

Solves the GLM (Generalized Linear Regression Model) using the GQR
(Generalized QR) factorization.

SGGLSE
DGGLSE
CGGLSE
ZGGLSE

Solves the LSE (Constrained Linear Least Squares Problem) using the
GRQ (Generalized RQ) factorization.

Table 10–4 lists the following expert driver routines: linear equation, least
square, and eigenvalue.

Table 10–4 Expert Driver Routines

Routine Function

Linear Equation Problems

SGESVX
DGESVX
CGESVX
ZGESVX

Solves a general system of linear equations AX=B, A**T X=B or A**H
X=B, and provides an estimate of the condition number and error bounds
on the solution.

SGBSVX
DGBSVX
CGBSVX
ZGBSVX

Solves a general banded system of linear equations AX=B, A**T X=B or
A**H X=B, and provides an estimate of the condition number and the
error bounds on the solution.

SGTSVX
DGTSVX
CGTSVX
ZGTSVX

Solves a general tridiagonal system of linear equations AX=B, A**T X=B
or A**H X=B, and provides an estimate of the condition number and the
error bounds on the solution.

SPOSVX
DPOSVX
CPOSVX
ZGOSVX

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, and provides an estimate of the condition number and error bounds
on the solution.

SPPSVX
DPPSVX
CPPSVX
ZPPSVX

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, where A is held in packed storage, and provides an estimate of the
condition number and error bounds on the solution.

SPBSVX
DPBSVX
CPBSVX
ZPBSVX

Solves a symmetric/Hermitian positive definite banded system of linear
equations AX=B, and provides an estimate of the condition number and
error bounds on the solution.

(continued on next page)
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Table 10–4 (Cont.) Expert Driver Routines

Routine Function

Linear Equation Problems

SPTSVX
DPTSVX
CPTSVX
ZPTSVX

Solves a symmetric/Hermitian positive tridiagonal system of linear
equations AX=B, and provides an estimate of the condition number and
error bounds on the solution.

SSYSVX
DSYSVX
CSYSVX
ZSYSVX
CHESVX
ZHESVX

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, and provides an estimate of the condition
number and error bounds on the solution.

SSPSVX
DSPSVX
CSPSVX
ZSPSVX
CHPSVX
ZHPSVX

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, where A is held in packed storage, and
provides an estimate of the condition number and error bounds on the
solution.

Least Squares Problems

SGELSX
DGELSX
CGELSX
ZGELSX

Computes the minimum norm least squares solution to an over-determined
or under-determined system of linear equations AX=B, using a complete
orthogonal factorization of A.

Eigenvalue Problems

SSYEVX
DSYEVX
CHEEVX
ZHEEVX

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
matrix.

SSPEVX
DSPEVX
CHPEVX
ZHPEVX

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
matrix in packed storage.

SSBEVX
DSBEVX
CHBEVX
ZHBEVX

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
band matrix.

SSTEVX
DSTEVX

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

SGEESX
DGEESX
CGEESX
ZGEESX

Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization so that selected eigenvalues are at the top left
of the Schur form, and computes reciprocal condition numbers for the
average of the selected eigenvalues, and for the associated right invariant
subspace.

SGEEVX
DGEEVX
CGEEVX
ZGEEVX

Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary balancing of the matrix, and computes reciprocal
condition numbers for the eigenvalues and right eigenvectors.

The remaining routines are either computational or auxiliary. The computational
routines solve a lower level of problem than the driver routines and the auxiliary
routines solve an even lower level problem.
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10.4 Example of LAPACK Use and Design
One of the most common uses for LAPACK is solving linear systems. If you are
using the old LINPACK routines to solve Ax = b, you first call the subroutine
dgefa to factor A, and then call dgesl to solve the system using the factored A.

The corresponding LAPACK call is as follows:

CALL DGESV(N,NRHS,A,LDA,IPIV,B,LDB,INFO)

The routine DGESV calls DGETRF to factor and overwrite A, and DGETRS to
solve (overwriting B) using the LU factors computed by DGETRF.

Blocked BLAS Level 3 algorithms come into the picture because DGETRF calls
the LAPACK routine ILAENV to obtain an optimal blocksize, and then DGETRF
uses blocked algorithms (for example, DTRSM) to complete its task. All of this is
invisible to normal top-level use because only the above call to the driver routine
DGESV need be made.

10.5 Performance Tuning
In the public release of LAPACK, the routine ILAENV provides default values
for blocksizes, crossover points, and other performance-tuning parameters for
use with specified routines. These values are generally sufficient for routine
use of LAPACK, and are invisible to the top-level user of the package. Certain
lower-level LAPACK routines call ILAENV to obtain the value of a parameters of
interest.

In this DXML release, LAPACK includes the routine XLAENV which enables
experimentation with blocksizes, crossover points, and other performance-tuning
parameters. Use of XLAENV is of interest to expert users familiar with LAPACK
source code.

Thus, you can either use the default values or experiment with the parameters
to tune the performance. The descriptions of ILAENV and XLAENV specify
how to switch between these modes, and how to set custom parameter values.
The following sample code segment sets a custom blocksize (in this case, 32) for
DGESV:

CALL XLAENV(100,1)
IBLK=32
CALL XLAENV(1,IBLK)
...
CALL DGESV( ... )
CALL XLAENV(100,0)

The final call to XLAENV reverts subsequent code back to the normal mode
of using the hard-coded parameters in ILAENV. The other calls are equally
straightforward, and are explained in the header and comments for the ILAENV
routine, and the entire source for the XLAENV routine, as displayed in Examples
10–1 and 10–2.
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Example 10–1 ILAENV

INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3,
$ N4 )

*
* -- LAPACK auxiliary routine --
* Digital version. Modified to allow expert user modifications of
* blocksize and other parameters using the XLAENV routine,
* via a common block shared by ILAENV and XLAENV.
*
* Purpose
* =======
*
* ILAENV returns problem-dependent parameters for the local
* environment. See ISPEC for a description of the parameters.
*
* In this (Digital) version, the problem-dependent parameters are either:
* (a.) contained in the integer array IPARMS in the common block CLAENV
* and the value with index ISPEC is copied to ILAENV.
* (b.) hard coded in the code below. ( normal use ).
* Common block initializaton forces IPARMS(100)=0 and thus
* option (b.) is the default.
*
* Option a.) is used if IPARMS(100)=1. (set by calling XLAENV)
* This option is provided for parameter-tuning and testing purposes.
* In this case values in IPARMS must be set to the desired values
* by calling XLAENV.
*
* Option b.) is used if IPARMS(100)=0:
* This version provides a set of parameters which should give good,
* but not optimal, performance on many of the currently available
* computers.
*
* Arguments
* =========
*
* ISPEC (input) INTEGER
* Specifies the parameter to be returned as the value of
* ILAENV.
* = 1: the optimal blocksize; if this value is 1, an unblocked
* algorithm will give the best performance.
* = 2: the minimum block size for which the block routine
* should be used; if the usable block size is less than
* this value, an unblocked routine should be used.
* = 3: the crossover point (in a block routine, for N less
* than this value, an unblocked routine should be used)
* = 4: the number of shifts, used in the nonsymmetric
* eigenvalue routines
* = 5: the minimum column dimension for blocking to be used;
* rectangular blocks must have dimension at least k by m,
* where k is given by ILAENV(2,...) and m by ILAENV(5,...)
* = 6: the crossover point for the SVD (when reducing an m by n
* matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
* this value, a QR factorization is used first to reduce
* the matrix to a triangular form.)
* = 7: the number of processors

(continued on next page)
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Example 10–1 (Cont.) ILAENV
* = 8: the crossover point for the multishift QR and QZ methods
* for nonsymmetric eigenvalue problems.
*
* NAME (input) CHARACTER*(*)
* The name of the calling subroutine, in either upper case or
* lower case.
*
* OPTS (input) CHARACTER*(*)
* The character options to the subroutine NAME, concatenated
* into a single character string. For example, UPLO = ’U’,
* TRANS = ’T’, and DIAG = ’N’ for a triangular routine would
* be specified as OPTS = ’UTN’.
*
* N1 (input) INTEGER
* N2 (input) INTEGER
* N3 (input) INTEGER
* N4 (input) INTEGER
* Problem dimensions for the subroutine NAME; these may not all
* be required.
*
* (ILAENV) (output) INTEGER
* >= 0: the value of the parameter specified by ISPEC
* < 0: if ILAENV = -k, the k-th argument had an illegal value.
*
* Further Details
* ===============
*
* The following conventions have been used when calling ILAENV from the
* LAPACK routines:
* 1) OPTS is a concatenation of all of the character options to
* subroutine NAME, in the same order that they appear in the
* argument list for NAME, even if they are not used in determining
* the value of the parameter specified by ISPEC.
* 2) The problem dimensions N1, N2, N3, N4 are specified in the order
* that they appear in the argument list for NAME. N1 is used
* first, N2 second, and so on, and unused problem dimensions are
* passed a value of -1.
* 3) The parameter value returned by ILAENV is checked for validity in
* the calling subroutine. For example, ILAENV is used to retrieve
* the optimal blocksize for STRTRI as follows:
*
* NB = ILAENV( 1, ’STRTRI’, UPLO // DIAG, N, -1, -1, -1 )
* IF( NB.LE.1 ) NB = MAX( 1, N )
*
* =====================================================================
* ..
* .. Arrays in Common ..

INTEGER IPARMS( 100 ) /100*0/
* ..
* .. Common blocks ..

COMMON / CLAENV / IPARMS
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Example 10–2 XLAENV

SUBROUTINE XLAENV( ISPEC, NVALUE )
*
* -- LAPACK auxiliary routine --
* Digital version (shared common block with ILAENV)
* .. Scalar Arguments ..

INTEGER ISPEC, NVALUE
* ..
*
* Purpose
* =======
*
* XLAENV sets certain machine- and problem-dependent quantities
* which will later be retrieved by ILAENV.
*
* Arguments
* =========
*
* ISPEC (input) INTEGER
* Specifies the parameter to be set in the COMMON array IPARMS.
* = 1: the optimal blocksize; if this value is 1, an unblocked
* algorithm will give the best performance.
* = 2: the minimum block size for which the block routine
* should be used; if the usable block size is less than
* this value, an unblocked routine should be used.
* = 3: the crossover point (in a block routine, for N less
* than this value, an unblocked routine should be used)
* = 4: the number of shifts, used in the nonsymmetric
* eigenvalue routines
* = 5: the minimum column dimension for blocking to be used;
* rectangular blocks must have dimension at least k by m,
* where k is given by ILAENV(2,...) and m by ILAENV(5,...)
* = 6: the crossover point for the SVD (when reducing an m by n
* matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
* this value, a QR factorization is used first to reduce
* the matrix to a triangular form)
* = 7: the number of processors
* = 8: another crossover point, for the multishift QR and QZ
* methods for nonsymmetric eigenvalue problems.
* = 100: with NVALUE=1, subsequent calls to ILAENV will fetch
* a requested value directly from the common block (rather
* than use the hard-coded values in ILAENV). With NVALUE=0,
* subsequent calls to ILAENV will use the hard-coded values.
*
* NVALUE (input) INTEGER
* The value of the parameter specified by ISPEC.
*
* .. Arrays in Common ..

INTEGER IPARMS( 100 )
* ..
* .. Common blocks ..

COMMON / CLAENV / IPARMS
* ..
* .. Save statement ..

SAVE / CLAENV /

(continued on next page)
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Example 10–2 (Cont.) XLAENV

* ..
* .. Executable Statements ..
*

IF( ISPEC.GE.1 .AND. ISPEC.LE.100 ) THEN
IPARMS( ISPEC ) = NVALUE

END IF
*

RETURN
*
* End of XLAENV
*

END

10.6 Equivalence Between LAPACK and LINPACK/EISPACK
Routines

The LAPACK equivalence utility provides the names and parameter lists of
LAPACK routines that are equivalent to the LINPACK and EISPACK routines
you specify. The utility command is as follows:

/usr/share/equivalence_lapack routine_name [routine_name...]

where you replace routine_name with the LINPACK and/or EISPACK routine
names.

For example,

/usr/share/equivalence_lapack dgesl imtql1

returns:

DGESL:
SUBROUTINE SGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )

IMTQL1:
SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )

The LINPACK or EISPACK routine names are to the left of the colons. The
equivalent LAPACK routines and calling sequences are to the right of the colons.

This utility helps you to convert LINPACK and EISPACK routine calls to
equivalent LAPACK routine calls. The utility has limitations in that the
argument lists of the LAPACK routines are generally different from those
of the corresponding LINPACK and EISPACK routines, and the workspace
requirements are often different as well.

The LAPACK equivalence utility is installed at the following location:

/usr/opt/XMDLOA nnn /dxml/equivalence_lapack.c (source code)
/usr/opt/XMDLOA nnn /dxml/equivalence_lapack (executable)

where nnn refers to the version number for the release.
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11
Using the Signal Processing Subprograms

DXML provides functions that perform the following signal processing operations:

• Fast Fourier transforms (FFT), described in Section 11.1

• Cosine (DCT) and Sine (DST) transforms, described Section 11.2.1

• Convolutions and correlations, described in Section 11.3

• Digital filters, described in Section 11.4

This chapter provides information about the following topics:

• Mathematical definitions of FFT (Section 11.1.1)

• Storing the Fourier coefficients (Section 11.1.2)

• Fourier transform functions (Section 11.1.3)

• Mathematical definitions of DCT and DST (Section 11.2)

• Cosine and Sine transform functions (Section 11.2.2.4)

• Mathematical description of convolution and correlation (Section 11.3.1)

• Convolution and correlation functions (Section 11.3.2)

• Mathematical description of a digital filter (Section 11.4.1)

• Controlling the digital filter (Sections 11.4.2 and 11.4.3)

• Filtering routines (Section 11.4.4)

• Error handling (Section 11.5)

The descriptions of each signal processing routine and Fortran code examples
are at the end of this chapter. For information about using DXML routines
with non-Fortran programming languages, see Section 3.4 and Section 3.4.2.
Additional examples are included online in the /usr/examples/dxml directory.
See *.c and *.cxx . If you need more comprehensive explanations of signal
processing operations, consult the references provided in Appendix A.

Key Fast Fourier subprograms have been parallelized for improved peformance
on multiprocessor systems. For a list of these subprograms and information
about using the parallel library, see Chapter 4.

11.1 Fourier Transform
A finite or discrete Fourier transform decomposes a collection of data into
component sine and cosine representation. A continuous Fourier transform of a
function decomposes the function into a generalized sum of sinusoids of different
frequencies. A continuous Fourier transform is represented graphically by a
diagram that shows the amplitude and frequency of each of the sinusoids.
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11.1.1 Mathematical Definition of FFT
The forward Fourier transform is a mathematical operation that converts
numbers typically in the time domain to numbers typically in the frequency
domain. The inverse Fourier transform performs the reverse operation,
converting numbers in the frequency domain to numbers in the time domain.

This section reviews the mathematical definition of the various Fourier
transforms.

11.1.1.1 One-Dimensional Continuous Fourier Transform
The analytical expression for the one-dimensional forward Fourier transform for
continuous functions is commonly given as:

H(f) =

1Z
�1

h(t)e�i2�ftdt (11–1)

where H(f), a function in the frequency domain, is the Fourier transform of h(t);
h(t), a function in the time domain, is the waveform to be decomposed into a sum
of sinusoids; and i =

p�1.

The one-dimensional inverse operation is given as:

h(t) =

1Z
�1

H(f)ei2�tfdf (11–2)

Variations on the definitions given in Equations (11–1) and (11–2) do exist.
Sometimes a weighting function of 1=2� is found in front of the integral sign, and
2� is removed from the exponential term. See the references given in Appendix A
for information on the various definitions of the continuous forward and inverse
Fourier transforms.

11.1.1.2 One-Dimensional Discrete Fourier Transform
A digital computer cannot perform the integration indicated by the mathematical
expressions for the continuous Fourier transform. Since a digital computer can
only deal with discrete data points, the integration can only be approximated.

The Fourier transform functions must use a method known as the discrete
Fourier transform (DFT) to approximate the continuous Fourier transform
at discrete frequencies. The discrete Fourier transform does not process a
continuous function. Instead, it processes discrete points or samples that give
only an approximation of the continuous function. The continuous function might
not be known analytically.

The simplest interpretation of the one-dimensional discrete Fourier transform
results from interpreting a finite sequence as one period of a periodic sequence.

The mathematical expression for the one-dimensional discrete Fourier transform
is given as:

H(k) =
n�1X
m=0

h(m)e�i2�km=n (11–3)

where m and k are indices, k = 0; 1; 2; . . . ; n � 1; H(k) and h(m) represent
discrete functions of uniformly spaced data in the time and frequency domains
respectively; n is the data length, and i =

p�1.
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The one-dimensional inverse operation is given as:

h(m) =
1

n

n�1X
k=0

H(k)ei2�mk=n (11–4)

where m = 0; 1; 2; . . . ; n� 1

11.1.1.3 Two-Dimensional Discrete Fourier Transform
The simplest interpretation of the two-dimensional discrete Fourier transform
results from interpreting a two-dimensional sequence as one period of a doubly
periodic sequence.

Thus, with H(j; k) denoting the discrete Fourier transform of h(m1;m2), the
mathematical expression for the discrete Fourier transform in two dimensions is
given as:

H(j; k) =

n1�1X
m1=0

n2�1X
m2=0

h(m1;m2)e
(�i2�jm1)=n1e(�i2�km2)=n2 (11–5)

where:
j = 0; 1; 2; . . . ; n1 � 1
k = 0; 1; 2; . . . ; n2 � 1
i =
p�1

The inverse transform operation in two dimensions is given as:

h(m1;m2) =
1

n1n2

n1�1X
j=0

n2�1X
k=0

H(j; k)e(i2�jm1)=n1e(i2�km2)=n2 (11–6)

The two-dimensional discrete Fourier transform given by Equation (11–5) can be
rewritten as:

H(j; k) =

n1�1X
m1=0

f
n2�1X
m2=0

h(m1;m2)e
(�i2�km2)=n2ge(�i2�jm1)=n1 (11–7)

The quantity in braces, which we now call G(m1; k), is a two-dimensional
sequence which allows H(j; k) to be rewritten as:

G(m1; k) =

n2�1X
m2=0

h(m1;m2)e
(�i2�km2)=n2 (11–8)

H(j; k) =

n1�1X
m1=0

G(m1; k)e
(�i2�m1j )=n1 (11–9)

Each row of G is the one-dimensional discrete Fourier transform of the
corresponding row of h. Each column of H is the one-dimensional discrete Fourier
transform of the corresponding column of G.
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11.1.1.4 Three-Dimensional Discrete Fourier Transform
For three dimensions, the definition of the forward transform can be written as:

H(j; k; l) =

n1�1X
m1=0

n2�1X
m2=0

n3�1X
m3=0

h(m1;m2;m3)e
(�i2�jm1)=n1e(�i2�km2)=n2e(�i2�lm3)=n3 (11–10)

where:
j = 0; 1; 2; . . . ; n1 � 1
k = 0; 1; 2; . . . ; n2 � 1
l = 0; 1; 2; . . . ; n3 � 1
i =
p�1

The three-dimensional inverse operation can be written as:

h(m1;m2;m3) =

1

n1n2n3

n1�1X
j=0

n2�1X
k=0

n3�1X
l=0

H(j; k; l)e(i2�jm1)=n1e(i2�km2)=n2e(i2�lm3)=n3 (11–11)

where:
m1 = 0; 1; 2; . . . ; n1 � 1
m2 = 0; 1; 2; . . . ; n2 � 1
m3 = 0; 1; 2; . . . ; n3 � 1

11.1.1.5 Size of Fourier Transform
Table 11–1 shows the restrictions on the size of FFT.

Table 11–1 FFT Size

Complex FFT 1D n > 0

2D nx > 0

ny > 0

3D nx > 0

ny > 0

nz > 0

Real FFT 1D n > 0, n is even

2D nx > 0, n is even

nx is even

ny > 0

3D nx > 0, n is even

nx is even

ny > 0

nz > 0
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11.1.2 Data Storage
The output of Fourier transforms can be stored in several ways, depending on the
format of the data, and its symmetry. This section describes the efficiencies of the
data storage method.

11.1.2.1 Storing the Fourier Coefficients of a 1D-FFT
When the Fourier transform of a real data sequence is performed, the
transformed data is complex, and the identity shown in Equation (11–12) results
from symmetry considerations:

H(n� k) = H�(k) (11–12)

where H�(k) is the complex conjugate of H(k), and k = 0; 1; 2; . . . ; n2 .

Note that H(0) = H�(n) = H�(0) and H(n2 ) = H�(n2 ). Therefore, H(0) and
H(n2 ) are real. So, to specify the Fourier transform of a real sequence, only
(n2 � 1) complex values and 2 real values are needed. The storage of the Fourier
coefficient takes advantage of this.

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. The elements of
the resulting output array are usually unique. As a result, all of the output data
needs to be stored. DXML stores all the output data, and the length of the output
array is the same as the length of the input array. In the following let X be the
Fourier transform of x.

Storing the 1D-FFT in Real Data Format (R,R)

0
BB@

x0
x1
...

xn�1

1
CCA !

0
BBBBBBBBBBBB@

Xr(0)
Xr(1)

...
Xr(

n
2 )

Xi(
n
2 � 1)

Xi(
n
2 � 2)
...

Xi(1)

1
CCCCCCCCCCCCA

In each type of transform, the resulting array has the size described in
Table 11–2.

Table 11–2 Size of Output Array for SFFT and DFFT

Direction
Input
Format

Output
Format Input Values Output Values

Complex Real Complex Real

F R C 0 n n

2 + 1 0

B C R n

2 + 1 0 0 n

F R R 0 n n

2 � 1 2

B R R n

2 � 1 2 0 n
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Storing the 1D-FFT in Complex Data Format (R,C)

0
BB@

x0
x1
...

xn�1

1
CCA !

0
BBBB@

Xr(0)
Xi(0)

...
Xr(

n
2 )

Xi(
n
2 )

1
CCCCA

In each type of transform, the resulting array has the size described in
Table 11–3.

Table 11–3 Size of Output Array from CFFT and ZFFT

Direction
Input
Format

Output
Format Input Values Output Values

Complex Real Complex Real

F/B R R n 0 n 0

F/B C C n 0 n 0

Storing the 1D-FFT in Complex Data Format (C,C)0
B@ (xr(0); xi(0))

...
(xr(N � 1); xi(N � 1))

1
CA !

0
B@ (Xr(0); Xi(0))

...
(Xr(N � 1); Xi(N � 1))

1
CA

Storing the Transform of a Complex Sequence in Real Data Format (C,R)0
B@ xr(0)

...
xr(N � 1)

1
CA
0
B@ xi(0)

...
xi(N � 1)

1
CA !

0
B@ Xr(0)

...
Xr(N � 1)

1
CA
0
B@ Xi(0)

...
Xi(N � 1)

1
CA

11.1.2.2 Storing the Fourier Coefficients of 2D-FFT
When the 2D FFT of a real data sequence is performed, the transformed data is
complex with the following symmetry:

H(i; j ) = H�(nx � i; ny � j) (11–13)

for:
0 � i � nx-1
0 � j � ny-1

where Hi(i; j) = 0 for (0; 0); (nx2 ; 0)(0;
ny
2 ); and(nx2 ;

ny
2 ). The storage of FFT takes

advantage of this.

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. As a result,
all of the output data needs to be stored. DXML stores all the output data, and
the length of the output array is the same as the length of the input array.
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Storing a Real Sequence and its Transform in Real Data Format
The following cases show how the value of X is stored in a location in array A.
The index of array A starts at zero. When ny is odd, cases 2 and 4 do not apply.

1. Xr(0; 0)!A(0; 0)

2. Xr(0;
ny
2 )!A(0;

ny
2 )

3. Xr(
nx
2 ; 0)!A(nx2 ; 0)

4. Xr(
nx
2 ;

ny
2 )!A(nx2 ;

ny
2 )

5. Xr(i; j )!A(i; j); Xi(i; j)!A(i; ny � j) for 0 < j <
ny
2 ; i = 0; nx2

6. Xr(i; j)!A(i; j); Xi(i; j)!A(nx � i; j) for 0�j�ny � 1; 1�i�nx
2 � 1

The following is an example of nx = 8 and ny = 4:0
BBBBBBBBB@

x(0; 0) x(0; 1) x(0; 2) x(0; 3)
x(1; 0) x(1; 1) x(1; 2) x(1; 3)
x(2; 0) x(2; 1) x(2; 2) x(2; 3)
x(3; 0) x(3; 1) x(3; 2) x(3; 3)
x(4; 0) x(4; 1) x(4; 2) x(4; 3)
x(5; 0) x(5; 1) x(5; 2) x(5; 3)
x(6; 0) x(6; 1) x(6; 2) x(6; 3)
x(7; 0) x(7; 1) x(7; 2) x(7; 3)

1
CCCCCCCCCA
 !

0
BBBBBBBBB@

Xr(0; 0) Xr(0; 1) Xr(0; 2) Xi(0; 1)
Xr(1; 0) Xr(1; 1) Xr(1; 2) Xr(1; 3)
Xr(2; 0) Xr(2; 1) Xr(2; 2) Xr(2; 3)
Xr(3; 0) Xr(3; 1) Xr(3; 2) Xr(3; 3)
Xr(4; 0) Xr(4; 1) Xr(4; 2) Xi(4; 1)
Xi(3; 0) Xi(3; 1) Xi(3; 2) Xi(3; 3)
Xi(2; 0) Xi(2; 1) Xi(2; 2) Xi(2; 3)
Xi(1; 0) Xi(1; 1) Xi(1; 2) Xi(1; 3)

1
CCCCCCCCCA

Storing a Real Sequence and its Transform in Complex Data Format

Xr(i; j)!A(2i; j) 0�i�nx
2
; 0�j�ny � 1

Xi(i; j)!A(2i+ 1; j) 0�i�nx
2
; 0�j�ny � 1

0
BBBBBBBBB@

x(0; 0) x(0; 1) x(0; 2) x(0; 3)
x(1; 0) x(1; 1) x(1; 2) x(1; 3)
x(2; 0) x(2; 1) x(2; 2) x(2; 3)
x(3; 0) x(3; 1) x(3; 2) x(3; 3)
x(4; 0) x(4; 1) x(4; 2) x(4; 3)
x(5; 0) x(5; 1) x(5; 2) x(5; 3)
x(6; 0) x(6; 1) x(6; 2) x(6; 3)
x(7; 0) x(7; 1) x(7; 2) x(7; 3)

1
CCCCCCCCCA
 !

0
BBBBBBBBBBBBB@

Xr(0; 0) Xr(0; 1) Xr(0; 2) Xr(0; 3)
Xi(0; 0) Xi(0; 1) Xi(0; 2) Xi(0; 3)
Xr(1; 0) Xr(1; 1) Xr(1; 2) Xr(1; 3)
Xi(1; 0) Xi(1; 1) Xi(1; 2) Xi(1; 3)
Xr(2; 0) Xr(2; 1) Xr(2; 2) Xr(2; 3)
Xi(2; 0) Xi(2; 1) Xi(2; 2) Xi(2; 3)
Xr(3; 0) Xr(3; 1) Xr(3; 2) Xr(3; 3)
Xi(3; 0) Xi(3; 1) Xi(3; 2) Xi(3; 3)
Xr(4; 0) Xr(4; 1) Xr(4; 2) Xr(4; 3)
Xi(4; 0) Xi(4; 1) Xi(4; 2) Xi(4; 3)

1
CCCCCCCCCCCCCA

Storing a Complex Sequence and its Transform in Complex Data Format

0
@ (xr(0; 0); xi(0; 0)) (xr(0; 1); xi(0; 1)) . . . (xr(ny � 1; 0); xi(ny � 1; 0))

...
(xr(nx � 1; 0); xi(nx � 1; 0)) . . . . . . (xr(nx � 1; ny � 1); xi(nx � 1; ny � 1))

1
A

l0
B@ (Xr(0; 0); Xi(0; 0)) (Xr(0; 1); Xi(0; 1)) . . . (Xr(ny � 1; 0); Xi(ny � 1; 0))

...
(Xr(nx � 1; 0); Xi(nx � 1; 0)) . . . . . . (Xr(nx � 1; ny � 1); Xi(nx � 1; ny � 1))

1
CA
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Storing Complex Sequence in Real Data Format

0
B@

xr(0; 0) xr(0; 1) . . . xr(0; ny � 1)
xr(1; 0) xr(1; 1) . . . xr(1; ny � 1)

...
xr(nx � 1; 0) . . . . . . xr(nx � 1; ny � 1)

1
CA

0
B@

xi(0; 0) xi(0; 1) . . . xi(0; ny � 1)
xi(1; 0) xi(1; 1) . . . xi(1; ny � 1)

...
xi(nx � 1; 0) . . . . . . xi(nx � 1; ny � 1)

1
CA

l

0
B@

Xr(0; 0) Xr(0; 1) . . . Xr(0; ny � 1)
Xr(1; 0) Xr(1; 1) . . . Xr(1; ny � 1)

...
Xr(nx � 1; 0) . . . . . . Xr(nx � 1; ny � 1)

1
CA

0
B@

Xi(0; 0) Xi(0; 1) . . . Xi(0; ny � 1)
Xi(1; 0) Xi(1; 1) . . . Xi(1; ny � 1)

...
Xi(nx � 1; 0) . . . . . . Xi(nx � 1; ny � 1)

1
CA

11.1.2.3 Storing the Fourier Coefficients of 3D-FFT
When the Fourier transform of a real data sequence is performed, the
transformed data is complex, and the identity shown in Equation (11–14) results
from symmetry considerations:

H(i; j; k) = H�(nx � i; ny � j; nz � k) (11–14)

for:
0�i�nx � 1
0�j�ny � 1
0�k�nz � 1

where H� is the complex conjugate of H .

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. The elements of
the resulting output array are usually unique. As a result, all of the output data
needs to be stored. DXML stores all the output data, and the length of the output
array is the same as the length of the input array.

Storing Real Sequence in Real Data Format

X(i; j; k) = X(nx � i; ny � j; nz � k)

For k = 0, x(i; j; 0) is stored in 2D format.
For k = nz

2 , and nz is even, x(i; j; nz2 ) is stored in 2D format.
For k 6=0; nz2 , 1�k�nz

2 � 1.

This example is (8; 4; k).
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0
BBBBBBB@

x(0; 0; k) x(0; 1; k) x(0; 2; k) x(0; 3; k)
x(1; 0; k) x(1; 1; k) x(1; 2; k) x(1; 3; k)
x(2; 0; k) x(2; 1; k) x(2; 2; k) x(2; 3; k)
x(3; 0; k) x(3; 1; k) x(3; 2; k) x(3; 3; k)
x(4; 0; k) x(4; 1; k) x(4; 2; k) x(4; 3; k)
x(5; 0; k) x(5; 1; k) x(5; 2; k) x(5; 3; k)
x(6; 0; k) x(6; 1; k) x(6; 2; k) x(6; 3; k)
x(7; 0; k) x(7; 1; k) x(7; 2; k) x(7; 3; k)

1
CCCCCCCA

0
BBBBBBB@

x(0; 0; nz � k) x(0; 1; nz � k) x(0; 2; nz � k) x(0; 3; nz � k)
x(1; 0; nz � k) x(1; 1; nz � k) x(1; 2; nz � k) x(1; 3; nz � k)
x(2; 0; nz � k) x(2; 1; nz � k) x(2; 2; nz � k) x(2; 3; nz � k)
x(3; 0; nz � k) x(3; 1; nz � k) x(3; 2; nz � k) x(3; 3; nz � k)
x(4; 0; nz � k) x(4; 1; nz � k) x(4; 2; nz � k) x(4; 3; nz � k)
x(5; 0; nz � k) x(5; 1; nz � k) x(5; 2; nz � k) x(5; 3; nz � k)
x(6; 0; nz � k) x(6; 1; nz � k) x(6; 2; nz � k) x(6; 3; nz � k)
x(7; 0; nz � k) x(7; 1; nz � k) x(7; 2; nz � k) x(7; 3; nz � k)

1
CCCCCCCA

l

0
BBBBBBB@

Xr(0; 0; k) Xr(0; 1; k) Xr(0; 2; k) Xr(0; 3; k)
Xr(1; 0; k) Xr(1; 1; k) Xr(1; 2; k) Xr(1; 3; k)
Xr(2; 0; k) Xr(2; 1; k) Xr(2; 2; k) Xr(2; 3; k)
Xr(3; 0; k) Xr(3; 1; k) Xr(3; 2; k) Xr(3; 3; k)
Xr(4; 0; k) Xr(4; 1; k) Xr(4; 2; k) Xr(4; 3; k)
Xi(3; 0; k) Xi(3; 1; k) Xi(3; 2; k) Xi(3; 3; k)
Xi(2; 0; k) Xi(2; 1; k) Xi(2; 2; k) Xi(2; 3; k)
Xi(1; 0; k) Xi(1; 1; k) Xi(1; 2; k) Xi(1; 3; k)

1
CCCCCCCA

0
BBBBBBB@

Xi(0; 0; k) Xi(0; 3; k) Xi(0; 2; k) Xi(0; 1; k)
Xr(1; 0; nz � k) Xr(1; 1; nz � k) Xr(1; 2; nz � k) Xr(1; 3; nz � k)
Xr(2; 0; nz � k) Xr(2; 1; nz � k) Xr(2; 2; nz � k) Xr(2; 3; nz � k)
Xr(3; 0; nz � k) Xr(3; 1; nz � k) Xr(3; 2; nz � k) Xr(3; 3; nz � k)

Xi(4; 0; k) Xi(4; 3; k) Xi(4; 2; k) Xi(4; 1; k)
Xi(3; 0; nz � k) Xi(3; 1; nz � k) Xi(3; 2; nz � k) Xi(3; 3; nz � k)
Xi(2; 0; nz � k) Xi(2; 1; nz � k) Xi(2; 2; nz � k) Xi(2; 3; nz � k)
Xi(1; 0; nz � k) Xi(1; 1; nz � k) Xi(1; 2; nz � k) Xi(1; 3; nz � k)

1
CCCCCCCA

The following cases show how the value of X is stored in a location in array A.
The index of array A starts at zero. When ny is odd, cases 3 and 5 do not apply.

1. i 6=0, i 6=nx
2 , 1�i�nx

2 � 1:
Xr(i; j; k)!A(i; j; k)

Xi(i; j; k)!A(nx � i; j; k)

2. i = 0; j = 0:
Xr(0; 0; k)!A(0; 0; k)

Xi(0; 0; k)!A(0; 0; nz � k)

3. i = 0; j =
ny
2 :

Xr(0;
ny
2
; k)!A(0;

ny
2
; k)

Xi(0;
ny
2
; k)!A(0;

ny
2
; nz � k)

4. i = nx
2 ; j = 0:

Xr(
nx
2
; 0; k)!A(

nx
2
; 0; k)

Xi(
nx
2
; 0; k)!A(

nx
2
; 0; nz � k)

5. i = nx
2 ; j =

ny
2 :

Xr(
nx
2
;
ny
2
; k)!A(

nx
2
;
ny
2
; k)

Xi(
nx
2
;
ny
2
; k)!A(

nx
2
;
ny
2
; nz � k)

6. i = 0; 1�j�ny
2 � 1;

ny
2 + 1�j�ny � 1

Xr(0; j; k)!Ar(0; j; k)

Xi(0; j; k)!Ar(0; ny � j; nz � k)
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7. i = nx
2 ; 1�j�ny

2 � 1;
ny
2 + 1�j�ny � 1

Xr(
nx
2
; j; k)!A(

nx
2
; j; k)

Xi(
nx
2
; j; k)!A(

nx
2
; ny � j; nz � k)

Total memory required = nxnynz

Storing Real Sequence in Complex Format

Xr(i; j; k)!A(2i; j; k) 0�i�nx
2
; 0�j�ny � 1; 0�k�nz � 1

Xi(i; j; k)!A(2i+ 1; j; k) 0�i�nx
2
; 0�j�ny � 1; 0�k�nz � 1

0
BBBBBBBBBBBBB@

Xr(0; 0; k) Xr(0; 1; k) Xr(0; 2; k) Xr(0; 3; k)
Xi(0; 0; k) Xi(0; 1; k) Xi(0; 2; k) Xi(0; 3; k)
Xr(1; 0; k) Xr(1; 1; k) Xr(1; 2; k) Xr(1; 3; k)
Xi(1; 0; k) Xi(1; 1; k) Xi(1; 2; k) Xi(1; 3; k)
Xr(2; 0; k) Xr(2; 1; k) Xr(2; 2; k) Xr(2; 3; k)
Xi(2; 0; k) Xi(2; 1; k) Xi(2; 2; k) Xi(2; 3; k)
Xr(3; 0; k) Xr(3; 1; k) Xr(3; 2; k) Xr(3; 3; k)
Xi(3; 0; k) Xi(3; 1; k) Xi(3; 2; k) Xi(3; 3; k)
Xr(4; 0; k) Xr(4; 1; k) Xr(4; 2; k) Xr(4; 3; k)
Xi(4; 0; k) Xi(4; 1; k) Xi(4; 2; k) Xi(4; 3; k)

1
CCCCCCCCCCCCCA

Total memory required = 2(nx2 + 1)(nynz) = nxnynz + 2nynz

Storing Complex Sequence in Complex Data Format

0
@ (xr(0; 0; k); xi(0; 0; k)) (xr(0; 1; k); xi(0; 1; k)) . . . (xr(ny � 1; 0; k); xi(ny � 1; 0; k))

...
(xr(nx � 1; 0; k); xi(nx � 1; 0; k)) . . . . . . (xr(nx � 1; ny � 1; k); xi(nx � 1; ny � 1; k))

1
A

l

0
@ (Xr(0; 0; k); Xi(0; 0; k)) (Xr(0; 1; k); Xi(0; 1; k)) . . . (Xr(ny � 1; 0; k); Xi(ny � 1; 0; k))

...
(Xr(nx � 1; 0; k); Xi(nx � 1; 0; k)) . . . . . . (Xr(nx � 1; ny � 1; k); Xi(nx � 1; ny � 1; k))

1
A
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Storing Complex Sequence in Real Data Format

0
B@

xr(0; 0; k) xr(0; 1; k) . . . xr(0; ny � 1; k)
xr(1; 0; k) xr(1; 1; k) . . . xr(1; ny � 1; k)

...
xr(nx � 1; 0; k) . . . . . . xr(nx � 1; ny � 1; k)

1
CA
0
B@

xi(0; 0; k) xi(0; 1; k) . . . xi(0; ny � 1; k)
xi(1; 0; k) xi(1; 1; k) . . . xi(1; ny � 1; k)

...
xi(nx � 1; 0; k) . . . . . . xi(nx � 1; ny � 1; k)

1
CA

l

0
B@

Xr(0; 0; k) Xr(0; 1; k) . . . Xr(0; ny � 1; k)
Xr(1; 0; k) Xr(1; 1; k) . . . Xr(1; ny � 1; k)

...
Xr(nx � 1; 0; k) . . . . . . Xr(nx � 1; ny � 1; k)

1
CA
0
B@

Xi(0; 0; k) Xi(0; 1; k) . . . Xi(0; ny � 1; k)
Xi(1; 0; k) Xi(1; 1; k) . . . Xi(1; ny � 1; k)

...
Xi(nx � 1; 0; k) . . . . . . Xi(nx � 1; ny � 1; k)

1
CA

11.1.2.4 Storing the Fourier Coefficient of Group FFT
Storing the output of a group FFT operation is similar to the methods used for
one-dimensional FFT data storage.

Storing Real Sequence in Real Data Format0
BBB@
x0x1 . . . xn�1
y0y1 . . . yn�1

...
z0z1 . . . zn�1

1
CCCA !

0
BBB@
Xr(0)Xr(1) . . .Xr(

n
2 )Xi(

n
2 � 1) . . .Xi(1)

Yr(0)Yr(1) . . .Yr(
n
2 )Yi(

n
2 � 1) . . .Yi(1)

...
Zr(0)Zr(1) . . .Zr(

n
2 )Zi(

n
2 � 1) . . .Zi(1)

1
CCCA

Storing Real Sequence in Complex Data Format0
BBB@
x0x1 . . . xn�1
y0y1 . . . yn�1

...
z0z1 . . . zn�1

1
CCCA !

0
BBB@
(Xr(0)Xi(0)) . . . (Xr(

n
2 )Xi(

n
2 ))

(Yr(0)Yi(0)) . . . (Yr(
n
2 )Yi(

n
2 ))

...
(Zr(0)Zi(0)) . . . (Zr(

n
2 )Zi(

n
2 ))

1
CCCA

Storing Complex Sequence in Complex Data Format

0
BB@
(xr(0); xi(0)) . . . (xr(n� 1); xi(n� 1))
(yr(0); yi(0)) . . . (yr(n� 1); yi(n� 1))

...
(zr(0); zi(0)) . . . (zr(n� 1); zi(n� 1))

1
CCA

l
0
BB@
(Xr(0); Xi(0)) . . . (Xr(n� 1); Xi(n� 1))
(Yr(0); Yi(0)) . . . (Yr(n� 1); Yi(n� 1))

...
(Zr(0); Zi(0)) . . . (Zr(n� 1); Zi(n� 1))

1
CCA
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Storing Complex Sequence in Real Data Format

0
BB@
xr(0)xr(1) . . . xr(n� 1)
yr(0)yr(1) . . . yr(n� 1)

...
zr(0)zr(1) . . . zr(n� 1)

1
CCA
0
BB@
xi(0)xi(1) . . . xi(n� 1)
yi(0)yi(1) . . . yi(n� 1)

...
zi(0)zi(1) . . . zi(n� 1)

1
CCA

l
0
BB@
Xr(0)Xr(1) . . .Xr(n� 1)
Yr(0)Yr(1) . . .Yr(n� 1)

...
Zr(0)Zr(1) . . .Zr(n� 1)

1
CCA
0
BB@
Xi(0)Xi(1) . . .Xi(n� 1)
Yi(0)Yi(1) . . .Yi(n� 1)

...
Zi(0)Zi(1) . . .Zi(n� 1)

1
CCA

11.1.3 DXML’s FFT Functions
The DXML provides a comprehensive set of Fourier transform functions covering
the following options:

• Dimensions: one, two, or three

• Direction: forward or inverse

• Data type: real or complex

• Data format: real or complex

• Precision: single or double

This section describes the effects of these options.

11.1.3.1 Choosing Data Lengths
The data length is the number of elements being transformed. This length
determines the duration and method of computation for FFT operations. To save
computation time, choose a nonprime value for the data length to make use of the
fast algorithm. A prime value is slower because it cannot use the FFT algorithm.

Choose a value according to the following hierarchy, arranged from best
performance to worst performance:

1. The data length is a power of 2.

2. The data length is the product of the small primes 2, 3, and 5.

3. The data length is a product of primes which may be greater than 7.

4. The data length is prime.

Although the performance is best when the data length is a power of 2, none of
the functions limit the data length to a power of 2 as is commonly found in other
FFT libraries.
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11.1.3.2 Input and Output Data Format
The permitted format of input and output data is specified by the arguments
input_format and output_format. Table 11–4 shows the values you specify for
these arguments for real and complex, forward and inverse transforms.

Table 11–4 Input and Output Format Argument Values

Direction Input Format Output Format

Real Transforms

Forward ’ R’ ’ C’

Backward ’ C’ ’ R’

Either ’ R’ ’ R’

Complex Transforms

Either ’ R’ ’ R’

’ C’ ’ C’

If you use an unsupported combination of input and output format, you receive
one of the status values listed in Table 11–5.

Table 11–5 Status Values for Unsupported Input and Output Combinations

Value Function Meaning

16 DXML_BAD_FORMAT_STRING( ) The specified combination of
formats is not supported.

18 DXML_BAD_FORMAT_FOR_DIRECTION( ) The specified combination of
formats is not supported for
the specified direction.

Use the supported combinations as shown in Table 11–4.

11.1.3.3 Using the Internal Data Structures
Every time you perform an FFT operation, the software builds an internal data
structure. The data structure provides a convenient way of storing attributes of
the FFT such as the data length and type of stride allowed, as well as pointers to
virtual memory.

If a program performs repeated FFTs, the process is more efficient if the internal
data structure is saved and reused. This saves the recalculation of the same
internal data structure over and over again. For this reason, DXML provides two
ways of performing fast Fourier transforms, each with its own advantage:

• One-step FFT
If your program performs only one or a few FFT operations, use one
subroutine to initialize, apply, and remove the internal data structure.

• Three-step FFT
If your program repeats the same FFT operation, use the set of three
subroutines:

The _INIT subroutine builds the internal data structures.
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The _APPLY subroutine uses the internal data structures to compute the
FFT.

The _EXIT subroutine deallocates the virtual memory that was allocated
by the _INIT subroutine.

The internal data structures are constant for a specified length of data, the data
type, and for one-, two-, or three-dimensional transforms. When you change one
of these characteristics, you must reinitialize the data structure. So, after you
call the _INIT routine, you can call the _APPLY routine many times, as long as
your data length and data type remains the same.

The three-step subroutines each use an fft_struct argument to manipulate the
internal data structure. You declare the fft_struct using the appropriate call for
the data format:

RECORD /DXML_S_FFT_STRUCTURE/
RECORD /DXML_D_FFT_STRUCTURE/
RECORD /DXML_C_FFT_STRUCTURE/
RECORD /DXML_Z_FFT_STRUCTURE/

You do not have to do anything else with this argument. For example, to perform
a three-step, one-dimensional, single-precision complex FFT, declare the variable
fft_struct of type RECORD /DXML_C_FFT_STRUCTURE/, as shown in the
following code example:

INCLUDE ’/usr/include/DXMLDEF.FOR’
REAL*4 IN_R(N,100),IN_I(N,100),OUT_R(N,100),OUT_I(N,100)
COMPLEX*8 IN(N,100),OUT(N,100)
INTEGER*4 STATUS
CHARACTER*1 DIRECTION
RECORD /DXML_C_FFT_STRUCTURE/ FFT_STRUCT

DIRECTION = ’F’
STATUS = CFFT_INIT(N,FFT_STRUCT,.TRUE.)
DO I=1,100

STATUS = CFFT_APPLY(’C’,’C’,DIRECTION,IN(1,I),OUT(1,I),
1 FFT_STRUCT,1)

ENDDO
DO I=1,100

STATUS = CFFT_APPLY(’R’,’R’,DIRECTION,IN_R(1,I),IN_I(1,I),
1 OUT_R(1,I),OUT_I(1,I),FFT_STRUCT,1)

ENDDO
STATUS = CFFT_EXIT(FFT_STRUCT)

11.1.3.4 Naming Conventions
A Fourier transform subroutine has a name composed of character groups that
tell you about the subroutine’s operation. Table 11–6 shows the character groups
used in the subroutine names and what they mean.

Table 11–6 Naming Conventions: Fourier Transform Functions

Character Group Mnemonic Meaning

First group S Single-precision real data

D Double-precision real data

C Single-precision complex data

(continued on next page)
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Table 11–6 (Cont.) Naming Conventions: Fourier Transform Functions

Character Group Mnemonic Meaning

Z Double-precision complex data

Second group FFT Fast Fourier Transform

Third group No mnemonic One-step operation

_INIT Three-step operation: building of internal
data structures

_APPLY Three-step operation: perform FFT

_EXIT Three-step operation: deallocation of virtual
memory in internal data structure

Fourth group No mnemonic One-dimensional FFT

_2D Two-dimensional FFT

_3D Three-dimensional FFT

_GRP FFT of grouped data

For example, DFFT_APPLY is the DXML function for calculating in double-
precision arithmetic the one-dimensional FFT of real data by applying the
internal data structures that were calculated in the first step, DFFT_INIT, of
this three-step operation.

11.1.3.5 Summary of Fourier Transform Functions
Table 11–7 summarizes the Fourier transform functions that perform the entire
transform, either forward or reverse, in one step.

Table 11–7 Summary of One-Step Fourier Transform Functions

Name Operation

SFFT Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, real data.

DFFT Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, real data.

CFFT Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, complex data.

ZFFT Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, complex data.

SFFT_2D Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, real data.

DFFT_2D Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, real data.

CFFT_2D Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, complex data.

(continued on next page)
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Table 11–7 (Cont.) Summary of One-Step Fourier Transform Functions

Name Operation

ZFFT_2D Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, complex data.

SFFT_3D Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, real data.

DFFT_3D Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, real data.

CFFT_3D Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, complex data.

ZFFT_3D Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, complex data.

SFFT_GRP Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of a group of real data.

DFFT_GRP Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of a group of real data.

CFFT_GRP Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of a group of complex data.

ZFFT_GRP Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of a group of complex data.

Table 11–8 summarizes the three-step Fourier transform functions. Each function
is either an initialization step, an application step, or an exit step.

Table 11–8 Summary of Three-Step Fourier Transform Functions

Name Operation

SFFT_INIT Calculates internal data structures.

SFFT_APPLY Applies SFFT_INIT’s internal data structure to calculate, in single-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, real data.

SFFT_EXIT Deallocates the virtual memory allocated by SFFT_INIT.

DFFT_INIT Calculates internal data structures.

DFFT_APPLY Applies DFFT_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, real data.

DFFT_EXIT Deallocates the virtual memory allocated by DFFT_INIT.

CFFT_INIT Calculates internal data structures.

CFFT_APPLY Applies CFFT_INIT’s internal data structure to calculate, in single-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, complex data.

CFFT_EXIT Deallocates the virtual memory allocated by CFFT_INIT.

(continued on next page)
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Table 11–8 (Cont.) Summary of Three-Step Fourier Transform Functions

Name Operation

ZFFT_INIT Calculates internal data structures.

ZFFT_APPLY Applies ZFFT_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, complex data.

ZFFT_EXIT Deallocates the virtual memory allocated by ZFFT_INIT.

SFFT_INIT_2D Calculates internal data structures.

SFFT_APPLY_2D Applies SFFT_INIT_2D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, real data.

SFFT_EXIT_2D Deallocates the virtual memory allocated by SFFT_INIT_2D.

DFFT_INIT_2D Calculates internal data structures.

DFFT_APPLY_2D Applies DFFT_INIT_2D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, real data.

DFFT_EXIT_2D Deallocates the virtual memory allocated by DFFT_INIT_2D.

CFFT_INIT_2D Calculates internal data structures.

CFFT_APPLY_2D Applies CFFT_INIT_2D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, complex data.

CFFT_EXIT_2D Deallocates the virtual memory allocated by CFFT_INIT_2D.

ZFFT_INIT_2D Calculates internal data structures.

ZFFT_APPLY_2D Applies ZFFT_INIT_2D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, complex data.

ZFFT_EXIT_2D Deallocates the virtual memory allocated by ZFFT_INIT_2D.

SFFT_INIT_3D Calculates internal data structures.

SFFT_APPLY_3D Applies SFFT_INIT_3D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, real data.

SFFT_EXIT_3D Deallocates the virtual memory allocated by SFFT_INIT_3D.

DFFT_INIT_3D Calculates internal data structures.

DFFT_APPLY_3D Applies DFFT_INIT_3D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, real data.

DFFT_EXIT_3D Deallocates the virtual memory allocated by DFFT_INIT_3D.

(continued on next page)
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Table 11–8 (Cont.) Summary of Three-Step Fourier Transform Functions

Name Operation

CFFT_INIT_3D Calculates internal data structures.

CFFT_APPLY_3D Applies CFFT_INIT_3D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, complex data.

CFFT_EXIT_3D Deallocates the virtual memory allocated by CFFT_INIT_3D.

ZFFT_INIT_3D Calculates internal data structures.

ZFFT_APPLY_3D Applies ZFFT_INIT_3D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, complex data.

ZFFT_EXIT_3D Deallocates the virtual memory allocated by ZFFT_INIT_3D.

SFFT_INIT_GRP Calculates internal data structures.

SFFT_APPLY_GRP Applies SFFT_INIT_GRP’s internal data structure to calculate,
in single-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, real data.

SFFT_EXIT_GRP Deallocates the virtual memory allocated by SFFT_INIT_GRP.

DFFT_INIT_GRP Calculates internal data structures.

DFFT_APPLY_GRP Applies DFFT_INIT_GRP’s internal data structure to calculate,
in double-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, real data.

DFFT_EXIT_GRP Deallocates the virtual memory allocated by DFFT_INIT_GRP.

CFFT_INIT_GRP Calculates internal data structures.

CFFT_APPLY_GRP Applies CFFT_INIT_GRP’s internal data structure to calculate,
in single-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, complex data.

CFFT_EXIT_GRP Deallocates the virtual memory allocated by CFFT_INIT_GRP.

ZFFT_INIT_GRP Calculates internal data structures.

ZFFT_APPLY_GRP Applies SFFT_INIT_GRP’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, complex data.

ZFFT_EXIT_GRP Deallocates the virtual memory allocated by ZFFT_INIT_GRP.

11.2 Cosine and Sine Transforms
Similar to the discrete Fourier transform, the Cosine and the Sine transforms
decompose a collection of data into a finite sum of sinusoids of different
frequencies. The differences among the three transforms are in the assumptions
about the data to be transformed. For example, the Fourier transform makes no
assumptions about the data as long as the existence conditions for the Fourier
integral are satisfied. The Sine transform assumes that the functions to be
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transformed are odd. The Cosine transform assumes that the functions to be
transformed are even.

11.2.1 Mathematical Definitions of DCT and DST
This section reviews the mathematical definitions of the Sine and the Cosine
transforms.

11.2.1.1 One-Dimensional Continuous Cosine and Sine Transforms
The analytical expressions for the one-dimensional forward Cosine transform
and the one-dimensional forward Sine transform for continuous functions are
commonly given as:

C(!) =

r
2

�

1Z
0

h(t) cos(!t) dt (11–15)

and:

S(!) =

r
2

�

1Z
0

h(t) sin(!t) dt (11–16)

respectively. C(!) and S(!), functions in the frequency domain, are the Cosine
and the Sine transforms of h(t). h(t), a function in the time domain, is the
waveform to be decomposed into a sum of sinusoids.

Equations for reversing the Cosine and the Sine transforms are as follows:

h(t) =

r
2

�

1Z
0

C(!) cos(!t) d! (11–17)

and:

h(t) =

r
2

�

1Z
0

S(!) sin(!t) d! (11–18)

respectively.

11.2.1.2 One-Dimensional Discrete Cosine and Sine Transforms
Similar to continuous Fourier transforms, continuous Cosine and Sine
transforms can be discretized. Unlike the Fourier transforms, there are multiple
discretization schemes that lead to multiple definitions of the discrete Cosine and
Sine transforms. The simplest discretization uses the following transforms:

Type I Cosine Transform

CI(k) = �k

NX
m=0

�m h(m) cos(
�mk

N
) (11–19)

where k = 0; :::; N .

Type I Sine Transform

SI(k) =
N�1X
m=1

h(m) sin(
�mk

N
) (11–20)

where k = 1; :::; N � 1 and where

�k =

� 1p
2

k = 0; N

1 k 6=0; N

�
(11–21)
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The inverse formulas for the Type I transforms are the following:

Inverse Type I Cosine Transform

h(m) = �m
2

N

NX
k=0

�kC
I(k) cos(

�mk

N
) (11–22)

where m = 0; :::; N .

Inverse Type I Sine Transform

h(m) =
2

N

N�1X
k=1

SI(k) sin(
�mk

N
) (11–23)

where m = 1; :::; N � 1 and with �k defined in (11–21).

Additionally, DXML implements the following Type II transforms:

Type II Cosine Transform

CII(k) = �k

N�1X
m=0

h(m) cos[
(2m+ 1)k�

2N
] (11–24)

where k = 0; :::; N � 1.

Type II Sine Transform

SII(k) = �k

NX
m=1

h(m) sin[
(2m� 1)k�

2N
] (11–25)

where k = 1; :::; N .

Inverse Type II Cosine Transform

h(m) =
2

N

NX
k=0

�k CII(k) cos[
(2m+ 1)k�

2N
] (11–26)

where m = 0; :::; N � 1.

Inverse Type II Sine Transform

h(m) =
2

N

NX
k=1

�k SII(k) sin[
(2m� 1)k�

2N
] (11–27)

where m = 1; :::; N with �k defined in (11–21). Although there are two other
forms of Cosine and Sine transforms, they are not implemented in DXML. See
the references given in Appendix A for information on the other forms of Cosine
and Sine transforms.

11.2.1.3 Size of Cosine and Sine Transforms
N , the size of the Cosine and Sine transforms, must be greater than 0 and even.
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11.2.1.4 Data Storage
The minimum size and the starting index for the input and output array for each
type of Cosine and Sine transform is listed in Table 11–9.

Table 11–9 Size and Starting Index for _FCT and _FST

Transform Type
Minimum
Size Starting Index

Cosine I N+1 0

Sine I N-1 1

Cosine II N 0

Sine II N 1

11.2.2 DXML’s FCT and FST Functions
DXML provides the following set of Cosine and Sine transform functions covering
the following options:

• Direction: forward or inverse

• Precision: single or double

• Type: I or II

11.2.2.1 Choosing Data Lengths
Since the Cosine and Sine transform functions are built on the FFT functions,
the same considerations for choosing the data length for the Fourier transforms
should be applied to the Cosine and Sine transforms. See Section 11.1.3.1 for
information on choosing the data lengths for FFT.

11.2.2.2 Using the Internal Data Structures
Each time you perform an FCT or an FST operation, the software builds an
internal data structure. The data structure provides a convenient way of storing
attributes of the FCT or FST operation such as the data length, type of stride
allowed, and pointers to virtual memory. If a program performs repeated FCTs
or FSTs, the process is more efficient if the internal data structure is saved and
re-used. For this reason, DXML provides two ways of performing FCT and FST
transforms:

• One-step FCT or FST
If your program performs only one or a few FCT or FST operations, use one
subroutine to initialize, apply, and remove the internal data structure.

• Three-step FCT or FST
If your program repeats the same FCT or FST operations, use the set of three
subroutines:

The _INIT subroutine builds the internal data structures.

The _APPLY subroutine uses the internal data structures to compute the
FCT or FST.

The _EXIT subroutine deallocates the virtual memory that was allocated
by the _INIT subroutine.
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The internal data structures are constant for a specified length of data. When
you change the length of data, you must reinitialize the data structure. After you
call the _INIT routine, you can call the _APPLY routine repeatedly as long as the
data length and transform type remain the same.

Each three-step subroutine uses a structure argument to manipulate the internal
data structure. You declare the data structure using the appropriate structure
argument for the data format.

For FCT:

RECORD /DXML_S_FCT_STRUCTURE/
RECORD /DXML_D_FCT_STRUCTURE/

For FST:

RECORD /DXML_S_FST_STRUCTURE/
RECORD /DXML_D_FST_STRUCTURE/

You do not have to do anything else with this argument. For example, to perform
a three-step, one-dimensional, single-precision Type I FST, declare the variable
FST_STRUCT of type RECORD /DXML_S_FST_STRUCTURE/, as shown in
the following code example:

REAL*4 IN(N,100),OUT(N,100)
INTEGER*4 SFST_INIT, SFST_APPLY, SFST_EXIT
INTEGER*4 STATUS
RECORD /DXML_S_FST_STRUCTURE/ FST_STRUCT
CHARACTER*1 DIRECTION

DIRECTION = ’F’
STATUS = SFST_INIT(N,FST_STRUCT,1,.TRUE.)
DO I=1,100

STATUS = SFST_APPLY(DIRECTION,IN(1,I),OUT(1,I),
1 FFT_STRUCT,1)

ENDDO
STATUS = SFST_EXIT(FFT_STRUCT)

11.2.2.3 Naming Conventions
A Cosine or a Sine transform subroutine has a name composed of character
groups that tell you about the subroutine’s operation. Table 11–10 shows the
character groups used in the subroutine names and what they mean.

Table 11–10 Naming Conventions: Cosine and Sine Transform Functions

Character Group Mnemonic Meaning

First group S Single-precision real data

D Double-precision real data

Second group FCT Fast Cosine Transform

FST Fast Sine Transform

Third group No mnemonic One-step operation

_INIT Three-step operation: building of internal
data structures

(continued on next page)
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Table 11–10 (Cont.) Naming Conventions: Cosine and Sine Transform
Functions

Character Group Mnemonic Meaning

_APPLY Three-step operation: perform FCT or FST

_EXIT Three-step operation: deallocation of virtual
memory in internal data structure

For example, SFST_APPLY is the DXML function for calculating in single-
precision arithmetic the one-dimensional FST of real data by applying the
internal data structures that were calculated in the first step, SFST_INIT, of
this three-step operation.

11.2.2.4 Summary of Cosine and Sine Transform Functions
Table 11–11 summarizes the Cosine and Sine transform functions that perform
the entire transform in one step.

Table 11–11 Summary of One-Step Cosine and Sine Transform Functions

Name Operation

SFCT Calculates, in single-precision arithmetic, the fast Cosine transform of
one-dimensional, real data.

DFCT Calculates, in double-precision arithmetic, the fast Cosine transform of
one-dimensional, real data.

SFST Calculates, in single-precision arithmetic, the fast Sine transform of
one-dimensional, real data.

DFST Calculates, in double-precision arithmetic, the fast Sine transform of
one-dimensional, real data.

Table 11–12 summarizes the three-step Cosine and Sine transform functions.
Each function is either an initialization step, an application step, or an exit step.

Table 11–12 Summary of Three-Step Cosine and Sine Transform Functions

Name Operation

SFCT_INIT Calculates internal data structures.

SFCT_APPLY Applies SFCT_INIT’s internal data structure to calculate, in single-
precision arithmetic, the fast Cosine transform of one-dimensional,
real data.

SFCT_EXIT Deallocates the virtual memory allocated by SFCT_INIT.

DFST_INIT Calculates internal data structures.

DFST_APPLY Applies DFST_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast Sine transform of one-dimensional,
real data.

DFST_EXIT Deallocates the virtual memory allocated by DFST_INIT.
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11.3 Convolution and Correlation
Convolution and correlation are operations that complement the signal processing
abilities of the Fourier transform. All number transforms (including the FFT)
and most digital filters are convolution operations.

Convolution modifies a signal sequence by weighting the sequence with a
function or an additional sequence of numbers. The convolution is used to obtain
properties from a signal source (such as the nth derivative), to selectively enhance
the signal source (in the case of a filter), or to domain transform the signal source
(as in the case of a Fourier transform). Some type of convolution is the basis for
most signal processing.

Correlation analyzes the similarity between two signals (as in the case of
cross-correlation) or of a signal with itself (as in the case of auto-correlation).

11.3.1 Mathematical Definitions of Correlation and Convolution
Many definitions exist for convolution and correlation. DXML uses very specific
definitions given in Sections 11.3.1.1, 11.3.1.2, and 11.3.1.3.

11.3.1.1 Definition of the Discrete Nonperiodic Convolution
The most common definition of a discrete nonperiodic convolution is given by:

hj =

nh�1X
k=0

x(j�k)yk (11–28)

for j = 0; 1; 2; . . . ; nh � 1 and nh = nx + ny � 1.

Here, nh is the total number of points to be output from the convolution
subroutine, nx is the number of points in the x array, and ny is the number
of points in the y array.

The y array is often called the filter array because nonrecursive digital filters
are commonly made by using convolution of the x data array with special filter
coefficients in the y array. For more information, consult the references given in
Appendix A.

The definition of convolution given in Equation (11–28) is operational for infinitely
long data sets in x and y, but because the data lengths are finite, in practice, the
subscript (j � k) will be out of range for the x array for certain values of j and k,
and the subscript k will be out of range for the y array for certain values of k.

xk = 0 when k < 0 or k > nx � 1 (11–29)

yk = 0 when k < 0 or k > ny � 1 (11–30)

For the general case used in DXML, the definition of nonperiodic convolution can
be rewritten as:

hj =

minfny�1;jgX
k=maxf0;j�nx+1g

x(j�k)yk (11–31)
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11.3.1.2 Definition of the Discrete Nonperiodic Correlation
For correlation, a similar situation exists. For the idealized case of infinitely long
data lengths, the definition of discrete nonperiodic correlation of two data sets, x
and y, is given as:

hj =

nh�1X
k=0

x(j+k)yk (11–32)

for 1� ny�j�nx � 1

Here, nh is the total number of points to be output from the correlation
subroutine, nx is the number of points in the x array, and ny is the number
of points in the y array.

Because of the finite lengths of the arrays, the relationships given by Equations
(11–29) and (11–30) are used:

xk = 0 when k < 0 or k > nx � 1

yk = 0 when k < 0 or k > ny � 1

For this case, the definition of nonperiodic correlation can be rewritten as:

hj =

minfnx�j;nyg�1X
k=maxf0;�jg

x(j+k)yk (11–33)

Many variations on the definitions of convolution and correlation given in
Equations (11–28) and (11–32) exist, but DXML uses the definitions given
by these equations. Some definitions of convolution and correlation contain a
normalization factor such as a 1=N term in front of the summation symbol where
N is usually nh as given in the DXML definitions. DXML subroutines do not use
a normalization factor.

11.3.1.3 Periodic Convolution and Correlation
For periodic convolution, DXML uses the nonperiodic definition with a few
differences. For 0�j�n� 1:

hj =
n�1X
k=0

x(j�k)yk (11–34)

For periodic correlation, DXML uses the following definition. Again, for 0�j�n�1:

hj =
n�1X
k=0

x(j+k)yk (11–35)

x and y are periodic with period n, that is, x(j+n) = xj; y(j+n) = yj . The data length
of the output h array is equal to that of the x and y array.

If the subscript on either x or y is out of range, the value is that of the folded
array. Folding is simply a modulus operation which implies periodicity.

As with nonperiodic convolution and correlation, no normalization factor is used
in front of the summation symbol in the definition of periodic convolution and
correlation.

For more information on periodic convolution and correlation, refer to the
references given in Appendix A.
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11.3.2 DXML’s Convolution and Correlation Subroutines
DXML includes a wide variety of discrete convolution and correlation subroutines
that support both periodic (circular) and nonperiodic (linear) convolution and
correlation. Each subroutine is available for both real and complex data and for
single-precision and double-precision arithmetic.

11.3.2.1 Using FFT Methods for Convolution and Correlation
DXML provides subroutines for calculating discrete convolutions and correlations
by using a discrete summing technique. Other techniques that use fast Fourier
transforms for calculating convolutions and correlations also exist, but they are
not part of DXML.

When data lengths are large and there is a time-critical need for computing
convolution and correlation functions, these FFT methods should be used. The
data lengths must be large because the FFT methods introduce distortion near
the edges of the data, unless there is true periodicity in the data, the data is well
behaved near the ends, and many periods are sampled.

For more information on performing convolution and correlation with FFTs, refer
to the references given in Appendix A.

11.3.2.2 Naming Conventions
A convolution or correlation subroutine has a name composed of character groups
that tell you about the subroutine’s operation. Table 11–13 shows the character
groups used in the subroutine names and what they mean.

Table 11–13 Naming Conventions: Convolution and Correlation Subroutines

Character Group Mnemonic Meaning

First group S Single-precision real data

D Double-precision real data

C Single-precision complex data

Z Double-precision complex data

Second group CONV Convolution subroutine

CORR Correlation subroutine

Third group _NONPERIODIC Nonperiodic operation

_PERIODIC Periodic operation

_NONPERIODIC_EXT Nonperiodic operation with
extension

_PERIODIC_EXT Periodic operation with
extension

For example, SCORR_PERIODIC is the DXML subroutine for calculating in
single-precision arithmetic the periodic correlation of two real arrays.
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11.3.2.3 Summary of Convolution and Correlation Subroutines
Tables 11–14 and 11–15 summarize the convolution and correlation subroutines.

Table 11–14 Summary of Convolution Subroutines

Subroutine Name Operation

SCONV_NONPERIODIC Calculates, in single-precision arithmetic, the nonperiodic
convolution of two real arrays.

DCONV_NONPERIODIC Calculates, in double-precision arithmetic, the nonperiodic
convolution of two real arrays.

CCONV_NONPERIODIC Calculates, in single-precision arithmetic, the nonperiodic
convolution of two complex arrays.

ZCONV_NONPERIODIC Calculates, in double-precision arithmetic, the nonperiodic
convolution of two complex arrays.

SCONV_PERIODIC Calculates, in single-precision arithmetic, the periodic
convolution of two real arrays.

DCONV_PERIODIC Calculates, in double-precision arithmetic, the periodic
convolution of two real arrays.

CCONV_PERIODIC Calculates, in single-precision arithmetic, the periodic
convolution of two complex arrays.

ZCONV_PERIODIC Calculates, in double-precision arithmetic, the periodic
convolution of two complex arrays.

SCONV_NONPERIODIC_
EXT

Calculates, in single-precision arithmetic, the nonperiodic
convolution of two real arrays.

DCONV_NONPERIODIC_
EXT

Calculates, in double-precision arithmetic, the nonperiodic
convolution of two real arrays.

CCONV_NONPERIODIC_
EXT

Calculates, in single-precision arithmetic, the nonperiodic
convolution of two complex arrays.

ZCONV_NONPERIODIC_
EXT

Calculates, in double-precision arithmetic, the nonperiodic
convolution of two complex arrays.

SCONV_PERIODIC_EXT Calculates, in single-precision arithmetic, the periodic
convolution of two real arrays.

DCONV_PERIODIC_EXT Calculates, in double-precision arithmetic, the periodic
convolution of two real arrays.

CCONV_PERIODIC_EXT Calculates, in single-precision arithmetic, the periodic
convolution of two complex arrays.

ZCONV_PERIODIC_EXT Calculates, in double-precision arithmetic, the periodic
convolution of two complex arrays.

Table 11–15 Summary of Correlation Subroutines

Subroutine Name Operation

SCORR_NONPERIODIC Calculates, in single-precision arithmetic, the
nonperiodic correlation of two real arrays.

DCORR_NONPERIODIC Calculates, in double-precision arithmetic, the
nonperiodic correlation of two real arrays.

CCORR_NONPERIODIC Calculates, in single-precision arithmetic, the
nonperiodic correlation of two complex arrays.

(continued on next page)
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Table 11–15 (Cont.) Summary of Correlation Subroutines

Subroutine Name Operation

ZCORR_NONPERIODIC Calculates, in double-precision arithmetic, the
nonperiodic correlation of two complex arrays.

SCORR_PERIODIC Calculates, in single-precision arithmetic, the
periodic correlation of two real arrays.

DCORR_PERIODIC Calculates, in double-precision arithmetic, the
periodic correlation of two real arrays.

CCORR_PERIODIC Calculates, in single-precision arithmetic, the
periodic correlation of two complex arrays.

ZCORR_PERIODIC Calculates, in double-precision arithmetic, the
periodic correlation of two complex arrays.

SCORR_NONPERIODIC_EXT Calculates, in single-precision arithmetic, the
nonperiodic correlation of two real arrays.

DCORR_NONPERIODIC_EXT Calculates, in double-precision arithmetic, the
nonperiodic correlation of two real arrays.

CCORR_NONPERIODIC_EXT Calculates, in single-precision arithmetic, the
nonperiodic correlation of two complex arrays.

ZCORR_NONPERIODIC_EXT Calculates, in double-precision arithmetic, the
nonperiodic correlation of two complex arrays.

SCORR_PERIODIC_EXT Calculates, in single-precision arithmetic, the
periodic correlation of two real arrays.

DCORR_PERIODIC_EXT Calculates, in double-precision arithmetic, the
periodic correlation of two real arrays.

CCORR_PERIODIC_EXT Calculates, in single-precision arithmetic, the
periodic correlation of two complex arrays.

ZCORR_PERIODIC_EXT Calculates, in double-precision arithmetic, the
periodic correlation of two complex arrays.

11.4 Digital Filtering
Digital filters are subroutines that eliminate certain frequency components from
a signal which has been corrupted with unwanted noise. DXML provides a
nonrecursive filter (also known as a finite impulse response filter) which can be
used in four ways:

• Lowpass filter
Eliminates frequency components above one value.

• Highpass filter
Eliminates frequency components below one value.

• Bandpass filter
Eliminates frequency components except those within a certain range.

• Bandstop (notch) filter
Eliminates frequency components within a certain range.

The DXML nonrecursive filter is an adaptation of the I0 � sinh filter originally
proposed by Kaiser. See Digital Filters by R.W. Hamming for a complete
mathematical description of this filter.
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11.4.1 Mathematical Definition of the Nonrecursive Filter
The transfer function of a nonrecursive digital filter, denoted as H(f), determines
the range of frequencies that are eliminated by a filter. Putting a sinusoidal
function of frequency f into the filter results in the output being the same as the
sinusoid, except that its amplitude is multiplied by H(f). The transfer function
H(f) can take on any of the forms shown in Figure 11–1.

Figure 11–1 Digital Filter Transfer Function Forms
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In Figure 11–1 fc refers to the Nyquist frequency 1=(2�t), �t is the time between
data samples, and f1 and f2 refer to the frequency values where filtering is to be
applied.

These ideal filters represent an infinitely sharp band; in practice, as shown in
Figure 11–2, the vertical lines are skewed.

The filtering discussed here pertains only to nonrecursive filters of the form:

yn = A0xn +
ntermsX
k=1

Ak(x(n+k) + x(n�k)) (11–36)

where yn is the dependent variable synthesized by the use of previous dependent
values x, Ak are the filter-dependent coefficients, and nterms is the number of
filter coefficients with A0 not included.

11.4.2 Controlling Filter Type
In the filter subroutines SFILTER_NONREC and SFILTER_INIT_NONREC, you
use the flow and fhigh arguments to control the type of filtering. Table 11–16
shows the flow and fhigh argument values associated with particular filtering
types.
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Table 11–16 Controlling Filtering Type

For a filter type of: Set flow to: Set fhigh to:

No filtering 0 1
Lowpass filter 0 0 < fhigh < 1
Highpass filter 0 < flow < 1 1
Bandpass filter 0 < flow < fhigh flow < fhigh < 1
Bandstop filter fhigh < flow < 1 0 < fhigh < flow

11.4.3 Controlling Filter Sharpness and Smoothness
In the filter subroutines SFILTER_NONREC and SFILTER_INIT_NONREC, you
use the nterms and wiggles arguments to control the sharpness and smoothness
of the filter.

Figure 11–2 shows the transfer function of a lowpass nonrecursive filter where
wiggles = 50.0, flow = 0.0, and fhigh = 0.5, for nterms = 5, 10, 20, and 50.

Figure 11–2 Lowpass Nonrecursive Filter for Varying Nterms

The nterms argument determines the sharpness of the filter. When nterms is
increased, the filter cutoff is sharper. Though it seems that using the largest
possible value for nterms results in a sharper filter, 2(nterms) number of data
points from the original set are not filtered. If the data set is large, the loss
of data caused by the filtering process is inconsequential. However, the loss of
data can be detrimental to smaller data sets. In addition, the computational
time increases proportionally to the value of nterms. Try to make the value of
nterms as large as possible without losing too many end points or making the
computational time too long.

Figure 11–3 shows the transfer function of a lowpass nonrecursive filter where
flow = 0.0, fhigh = 0.5, and nterms = 10, for wiggles = 0, 30, 50, and 70.
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Figure 11–3 Lowpass Nonrecursive Filter for Varying Wiggles

The wiggles argument controls the smoothness of the filter. The wiggles, which
are related to the size of Gibbs Phenomenon oscillations, are most prominent
when the value of the wiggles argument is 0.0. As the value of wiggles is
increased, the oscillations become less noticeable; however, the sharpness of the
filter decreases. A good compromise is to set wiggles = 50.0.

The size of the oscillations (in -dB units) is related to the value of the wiggles
argument:

jMagnitude of Oscillationsj = 10(�wiggles=20:0) (11–37)

11.4.4 DXML’s Digital Filter Subroutines
DXML includes three subroutines for nonrecursive filtering. These subroutines
are of two types, each of which does the filter operation in a different way:

• Completes the filter operation in one step.

• Completes the filter operation in two steps.

One subroutine initializes a working array; a second subroutine uses that
working array for repeated operations so that the working array need only be
calculated once.

The DXML filtering subroutines have single-precision capability; they do not have
double-precision capability.

11.4.4.1 Naming Conventions
A filter subroutine has a name composed of character groups that tell you about
the subroutine’s operation. Table 11–17 shows the character groups used in the
subroutine names and what they mean.
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Table 11–17 Naming Conventions: Digital Filter Subroutines

Character Group Mnemonic Meaning

First group S Single-precision real data

Second group FILTER Filtering subroutine

Third group No mnemonic One-step filter
_INIT Two-step filter initialization
_APPLY Two-step filter application

Fourth group _NONREC Nonrecursive filter

11.4.4.2 Summary of Digital Filter Subroutines
Table 11–18 summarizes the filter subroutines.

Table 11–18 Summary of Digital Filter Subroutines

Subroutine Name Operation

SFILTER_NONREC Performs the filter operation in one step

SFILTER_INIT_NONREC Initializes a working array

SFILTER_APPLY_NONREC Uses the initialized working array for repeated
filtering operations

11.5 Error Handling
The signal processing functions report success or error, using a status function
value. To include the error code and data structure definitions in a signal
processing application program, you must put one of the following lines at the
beginning of your program.

• For Fortran:

INCLUDE ’/usr/include/DXMLDEF.FOR’

• For C:

#include "/usr/include/dxmldef.h"

A callable routine, dxml_sig_error , is provided for the signal processing routines.
Example 11–1 shows how to use this routine.
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Example 11–1 Example of Error Routine for Signal Processing

PROGRAM EXAMPLE
INCLUDE ’/usr/include/DXMLDEF.FOR’

COMPLEX*8 A(8),OUTA(8),B(8),OUTB(8)
COMPLEX*8 DIFF(8),W,G0,G1,AA
REAL*4 TWOPI,T0
INTEGER*4 T,K,I,NT,STATUS,N

RECORD /DXML_D_FFT_STRUCTURE/ FFT_STRUCT

N = 8
TWOPI=6.283185307
T0=TWOPI/FLOAT(8)
W=CMPLX(COS(T0),(-1.0)*SIN(T0))
AA=(0.9,0.3)

C Compute the raw data for the transform
B(1)=(1.0,0.0)
DO 1 T=2,8

1 B(T)=AA**(T-1)

C Calculate the analytical transform of the function
NT=8
G0=(1.0,0.0)-AA**NT

DO 5 I=1,NT
G1=(1.0,0.0)-AA*(W**(I-1))

5 OUTA(I)=G0/G1

TYPE 100
100 FORMAT(//,3X,’FOR REAL FORWARD FFT WITH 8 POINTS ’,

1 //,3X,’POINT’,T11,’ANALYTICAL RESULT’,T37,’COMPUTED RESULT’,
2 T65,’DIFF.’,/)

C Compute the transform of the function using DXML routines
ISTAT = CFFT_INIT (0,FFT_STRUCT,.TRUE.)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

ISTAT = CFFT_APPLY (’C’,’C’,’F’,B,OUTB,FFT_STRUCT,1)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

ISTAT = CFFT_EXIT (FFT_STRUCT)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

C Calculate the difference between the computed and analytical solution
C to the transform

DO 10 I=1,NT
10 DIFF(I)=OUTB(I)-OUTA(I)

C Print out the results
DO 20 I=1,NT
TYPE 130,I,OUTA(I),OUTB(I),DIFF(I)

130 FORMAT(2X,I2,2X,3(2(1X,1PE11.4)))
20 CONTINUE

STOP
END
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Table 11–19 shows the status functions, the value returned, an explanation of the
error associated with each value, and the appropriate user action suggested to
recover from each error condition.

Table 11–19 DXML Status Functions

Function Value Description User Action

DXML_SUCCESS 0 Successful
execution of SIG
routines

No action required.

DXML_MAND_ARG 1 Mandatory
argument is
missing

Check the argument list.

DXML_ILL_TEMP_ARRAY 2 temp_array is
corrupted

Check code and correct the error.

DXML_IN_VERSION_SKEW 3 temp_array is from
old version

Use the same version of DXML to create
and use the temporary array.

DXML_ILL_N_IS_ODD 4 A value is odd Change n, n1, or n2 to an even value.

DXML_ILL_WIGGLES 5 Value is out of
range

Change wiggles to a value that is in
range.

DXML_ILL_FLOW 6 flow is equal to
fhigh

Provide different values for the flow and
fhigh arguments.

DXML_ILL_F_RANGE 7 flow or fhigh is out
of range

Check values of flow and fhigh
arguments and replace with a value
between 0.0 and 1.0, inclusive.

DXML_ILL_N_RANGE 8 n is out of range Check description of n for the allowed
length.

DXML_ILL_N_NONREC 9 n is less than
(2*nterms+1)

Either replace the current value of n
with a value greater than the value
of (2*nterms)+1 or make the value of
nterms smaller.

DXML_ILL_NTERMS 10 nterms is out of
range

Replace the current value of the nterms
argument with a value between 2 and
500, inclusive.

DXML_ILL_LDA 11 lda cannot be less
than n

Change lda to a value greater than or
equal to the number of data points in the
row direction.

DXML_INS_RES 12 Virtual memory or
pagefile quota is
not set high enough
for data length

Either change the data length to a
number that is not prime or increase the
allocated values of the pagefile quota and
virtual memory.

DXML_BAD_STRIDE 13 Stride is incorrect Change the value of stride to an integer
greater than or equal to 1.

DXML_DIRECTION_NOT_
MATCH

14 APPLY/INIT
directions different

Change the value of direction in either
APPLY or INIT to match.

DXML_BAD_DIRECTION_
STRING

15 Direction string is
incorrect

Change the first letter in value for
direction to ‘F’ or ‘B’.

(continued on next page)
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Table 11–19 (Cont.) DXML Status Functions

Function Value Description User Action

DXML_BAD_FORMAT_STRING 16 Format string is
incorrect

Change the first letter in format string to
‘R’ or ‘C’.

DXML_OPTION_NOT_
SUPPORTED

17 I/O combination not
supported

Refer to description of subprogram for
supported combinations.

DXML_BAD_FORMAT_
DIRECTION

18 Format/direction
combination not
supported

Refer to description of subprogram for
supported combinations.
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Fast Fourier Transform Subprograms

This section provides descriptions of the routines for fast transforms. The four
versions of each routine are titled by the name using a leading underscore
character. The section is ordered in the following way:

• By the type of FFT:

one-dimensional
two-dimensional
three-dimensional
group

• By function within each type:

one-step procedure
initialization
application
exit





_FFT

_FFT
Fast Fourier Transform in One Dimension
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT (input_format, output_format, direction, in, out, n, stride)

Complex transform in complex data format:

status = {C,Z}FFT (input_format, output_format, direction, in, out, n, stride)

Complex transform in real data format:

status = {C,Z}FFT (input_format, output_format, direction, in_real, in_imag, out_real, out_imag, n,
stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex transforms, the type of data determines what other arguments are
needed. When both the input and output data are real, the complex functions
store the data as separate arrays for imaginary and real data so additional
arguments are needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
Both the arguments are one-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.
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_FFT

in_real, out_real, in_imag, out_imag
real*4 | real*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

n
integer*4
Specifies the number of values to be transformed, that is, the length of the array
to be transformed, and therefore the required size of the resulting array; n > 0.

Subprogram Input Format Output Format Minimum Size

{S,D} ’ R’ ’ C’ n+2 (n must be even)
’ C’ ’ R’ n+2 (n must be even)
’ R’ ’ R’ n (n must be even)

{C,Z} ’ R’ ’ R’ n
’ C’ ’ C’ n

stride
integer*4
Specifies the distance between consecutive elements in the input and output
arrays. The distance must be at least 1.

Description

The _FFT functions compute the fast Fourier transform of one-dimensional
data in one step. The SFFT and DFFT functions perform the forward Fourier
transform of a real sequence and store the result in either real or complex data
format. These functions also perform the inverse Fourier transform of a complex
sequence into a real sequence.

The CFFT and ZFFT functions perform Fourier transforms on a complex
sequence. However, the argument list is different, depending on the data format
in which the output data is stored. See Section 11.1.3.2 for an explanation of real
and complex data format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
4 (real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
16 DXML_BAD_FORMAT_STRING( )
18 (real transforms only) DXML_BAD_FORMAT_FOR_DIRECTION( )
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Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, STATUS
COMPLEX*16 A(1024), B(1024)
REAL*8 C_REAL(1024),C_IMAG(1024),D_REAL(1024),D_IMAG(1024)
REAL*8 E(1026),F(1026)
REAL*8 G(1024),H(1024)
N = 1024
STATUS = ZFFT(’C’,’C’,’F’,A,B,N,1)
STATUS = ZFFT(’R’,’R’,’F’,C_REAL,C_IMAG,D_REAL,D_IMAG,N,1)
STATUS = DFFT(’R’,’C’,’F’,E,F,N,1)
STATUS = DFFT(’C’,’R’,’B’,F,E,N,1)
STATUS = DFFT(’R’,’R’,’F’,G,H,N,1)

This Fortran code computes the following:

• Forward Fourier transform of the complex sequence A to the complex
sequence B.

• Forward Fourier transform of the complex sequence C to the complex
sequence D. The data C and D are each stored as two real arrays.

• Forward Fourier transform of the real sequence E to the complex sequence F.
The data F is stored in complex format.

• Backward Fourier transform of the complex sequence F to the real sequence
E.

• Backward Fourier transform of the real sequence G to the complex sequence
H stored in real format.
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_FFT_INIT
Initialization Step for Fast Fourier Transform in One Dimension
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_INIT (n, fft_struct, stride_1_flag)

Arguments

n
integer*4
Specifies the number of values to be transformed, that is, the length of the array
to be transformed; n > 0. For real operations, n must be even.

fft_struct
record /dxml_s_fft_structure/ for single-precision real operations
record /dxml_d_fft_structure/ for double-precision real operations
record /dxml_c_fft_structure/ for single-precision complex operations
record /dxml_z_fft_structure/ for double-precision complex operations
You must include this argument but it needs no additional definitions. The
argument is declared in the program before this function. See Section 11.1.3.3 for
more information.

stride_1_flag
logical
Specifies the allowed distance between consecutive elements in the input and
output arrays:

TRUE: Stride must be 1.
FALSE: Stride is at least 1.

Description

The _FFT_INIT functions build internal data structures needed to compute fast
Fourier transforms of one-dimensional data. These functions are the first step in
a three-step procedure. They create the internal data structures, using attributes
defined in the file DXMLDEF.FOR.

Use the initialization function that is appropriate for the data format. Then use
the corresponding application and exit functions to complete the transform. For
example, use SFFT_INIT for the internal data structures used by SFFT_APPLY
and end with the SFFT_EXIT function.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Return Values

0 DXML_SUCCESS( )
4(real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
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_FFT_APPLY
Application Step for Fast Fourier Transform in One Dimension
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT_APPLY (input_format, output_format, direction, in, out, fft_struct, stride)

Complex transform in complex data format:

status = {C,Z}FFT_APPLY (input_format, output_format, direction, in, out, fft_struct, stride)

Complex transform in real data format:

status = {C,Z}FFT_APPLY (input_format, output_format, direction, in_real, in_imag, out_real,
out_imag, fft_struct, stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex transforms, the type of data determines what other arguments are
needed. When both the input and output data are real, the complex functions
store the data as separate arrays for imaginary and real data so additional
arguments are needed. See Section 11.1.3.2 for an explanation of real and
complex data format.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
Both the arguments are one-dimensional arrays. The input and output arrays can
be the same array. The IN array contains the data to be transformed. The OUT
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array contains the transformed data. The size of the output array is determined
by the value of n provided to the _INIT function.

Subprogram Input Format Output Format Minimum Size

{S,D} ’ R’ ’ C’ n+2 (n must be even)
’ C’ ’ R’ n+2 (n must be even)
’ R’ ’ R’ n (n must be even)

{C,Z} ’ R’ ’ R’ n
’ C’ ’ C’ n

in_real, out_real, in_imag, out_imag
real*4 | real*8
Use these arguments to perform a complex transform on real data format and
storing the result in a real data format.

fft_struct
record /dxml_s_fft_structure/ for single-precision real operations
record /dxml_d_fft_structure/ for double-precision real operations
record /dxml_c_fft_structure/ for single-precision complex operations
record /dxml_z_fft_structure/ for double-precision complex operations
The argument refers to the structure created by the _INIT function.

stride
integer*4
Specifies the distance between consecutive elements in the input and output
arrays, depending on the value of stride_1_flag provided in the _INIT function.

Description

The _FFT_APPLY routine performs the fast Fourier transform of one-dimensional
data, in either the forward or backward direction. These routines are the second
step of a three-step procedure. The _FFT_APPLY routine computes the fast
forward or inverse Fourier transform, using the internal data structures created
by the _FFT_INIT subroutine.

Use the _APPLY routines with their corresponding _INIT and _EXIT routines.
For example, use SFFT_APPLY after the SFFT_INIT and end with the SFFT_
EXIT routine.

The SFFT_APPLY and DFFT_APPLY functions perform the Fourier transform of
a real sequence (forward) or a complex sequence (inverse) into real sequence.

The CFFT_APPLY and ZFFT_APPLY functions perform Fourier transforms of a
complex sequence into a complex sequence, storing the output in either real or
complex data format. However, the argument list depends on the data format
of the output. See Section 11.1.3.2 for an explanation of real and complex data
format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
16 DXML_BAD_FORMAT_STRING( )
18 (real transform only) DXML_BAD_FORMAT_FOR_DIRECTION( )

Examples

1.
INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, STATUS
REAL*8 A(1026), B(1026)
RECORD /DXML_D_FFT_STRUCTURE/ FFT_STRUCT
N = 1024
STATUS = DFFT_INIT(N,FFT_STRUCT,.TRUE.)
STATUS = DFFT_APPLY(’R’,’C’,’F’,A,B,FFT_STRUCT,1)
STATUS = DFFT_EXIT(FFT_STRUCT)

This Fortran code computes the forward, real FFT of a vector, a, with length
of 1024. The result of the transform is stored in b in complex form. The
length of b is 1026 to hold 513 complex values.

2. INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, STATUS
COMPLEX*8 A(1024), B(1024)
RECORD /DXML_C_FFT_STRUCTURE/ FFT_STRUCT
N = 1024
STATUS = CFFT_INIT(N,FFT_STRUCT,.TRUE.)
STATUS = CFFT_APPLY(’C’,’C’,’F’,A,B,FFT_STRUCT,1)
STATUS = CFFT_EXIT(FFT_STRUCT)

This Fortran code computes the forward, complex FFT of a vector a, with
length of 1024. The result of the transform is stored in b in complex form.
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_FFT_EXIT
Final Step for Fast Fourier Transform in One Dimension
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_EXIT (fft_struct)

Arguments

fft_struct
record /dxml_s_fft_structure/ for single-precision real operations
record /dxml_d_fft_structure/ for double-precision real operations
record /dxml_c_fft_structure/ for single-precision complex operations
record /dxml_z_fft_structure/ for double-precision complex operations
This argument must be included but it is not necessary to modify it in any way.
It refers to the data structure that was specified by the initialization step. See
Section 11.1.3.3 for more information on the data structure.

Description

The _FFT_EXIT functions remove the internal data structures created in
the _FFT_INIT functions. These functions are the final step in a three-step
procedure. They release the virtual memory that was allocated by the _FFT_INIT
functions.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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_FFT_2D
Fast Fourier Transform in Two Dimensions
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT_2D (input_format, output_format, direction, in, out, ni, nj, lda, ni_stride, nj_stride)

Complex transforms in complex format:

status = {C,Z}FFT_2D (input_format, output_format, direction, in, out, ni, nj, lda, ni_stride, nj_stride)

Complex transform in real data format:

status = {C,Z}FFT_2D (input_format, output_format, direction, in_real, out_real, in_imag, out_imag, ni,
nj, lda, ni_stride, nj_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex data, the type of data determines what other arguments are needed.
When both the input and output data are real, the complex routines store the
data as separate arrays for imaginary and real data so additional arguments are
needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
Both the arguments are two-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.
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in_real, out_real, in_imag, out_imag
real*4 | real*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

ni, nj
integer*4
Specifies the size of the first and second dimension of data in the input array;
ni > 0, nj > 0. For SFFT_2D and DFFT_2D, ni must be even.

lda
integer*4
Specifies the number of rows in the IN and OUT arrays; lda�ni. For {S,D}
routines, lda�ni + 2 when the input format is ’ R’ and the output format is ’ C’

or the input format is ’ C’ and the output format is ’ R’ .

ni_stride, nj_stride
integer*4
Specifies the distance between consecutive elements in a column and row in the
IN and OUT arrays; ni_stride � 1, nj_stride � 1.

Description

The _FFT_2D routines compute the fast forward or inverse Fourier transform of
two-dimensional data in one step. The SFFT_2D and DFFT_2D functions perform
the forward Fourier transform of a real sequence and store the result in either
real or complex data format. These functions also perform the inverse Fourier
transform of a complex sequence into a real sequence.

The CFFT_2D and ZFFT_2D functions perform Fourier transforms on a complex
sequence. However, the argument list is different, depending on the data format
in which the output data is stored. See Section 11.1.3.2 for an explanation of real
and complex data format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
4 (with real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
11 DXML_ILL_LDA( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
16 DXML_BAD_FORMAT_STRING( )
18 DXML_BAD_FORMAT_FOR_DIRECTION( )
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Examples

1. INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, STATUS, LDA
REAL*8 A(1026,512), B(1026,513)
N_I = 1024
N_J = 512
LDA = 1026
STATUS = DFFT_2D(’R’,’C’,’F’,A,B,N_I,N_J,LDA,1,1)

This Fortran code computes the forward, two-dimensional, real FFT of a
1024x512 matrix A. The result of the transform is stored in B in complex
form. The leading dimension of B is 1026 in order to hold the extra complex
values (see section on data storage). The input matrix A also requires a
leading dimension of at least 1026.

2. INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, STATUS, LDA
COMPLEX*8 A(1024,512), B(1024,512)
N_I = 1024
N_J = 512
LDA = 1024
STATUS = CFFT_2D(’C’,’C’,’F’,A,B,N_I,N_J,LDA,1,1)

This Fortran code computes the forward, two-dimensional, complex FFT of a
matrix A, of dimension 1024 by 512. The result of the transform is stored in
B in complex form.
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_FFT_INIT_2D
Initialization Step for Fast Fourier Transform in Two Dimensions
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_INIT_2D (ni, nj, fft_struct, ni_stride_1_flag)

Arguments

ni, nj
integer*4
Specifies the size of the first and second dimension of data in the input array;
ni > 0, nj > 0. For SFFT_INIT_2D and DFFT_INIT_2D, ni must be even.

fft_struct
record /dxml_s_fft_structure_2d/ for single-precision real operations
record /dxml_d_fft_structure_2d/ for double-precision real operations
record /dxml_c_fft_structure_2d/ for single-precision complex operations
record /dxml_z_fft_structure_2d/ for double-precision complex operations
This argument must be included but needs no additional definitions. The
argument is declared in the program before this routine. See Section 11.1.3.3 for
more information.

ni_stride_1_flag
logical
Specifies whether to allow a stride of more than 1 between elements in the row:

TRUE: Stride must be 1.
FALSE: Stride is at least 1.

Description

The _FFT_INIT_2D functions build internal data structures needed to compute
fast Fourier transforms of two-dimensional data. These routines are the first
step in a three-step procedure. They create the internal data structures, using
attributes defined in the file DXMLDEF.FOR.

Use the initialization routine that is appropriate for the data format. Then,
use the corresponding application and exit steps to complete the procedure.
For example, use the SFFT_2D_INIT routine with the SFFT_2D_APPLY and
SFFT_2D_EXIT routine.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Return Values

0 DXML_SUCCESS( )
4 (real transform only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
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_FFT_APPLY_2D
Application Step for Fast Fourier Transform in Two Dimensions
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT_APPLY_2D (input_format, output_format, direction, in, out, lda, fft_struct, ni_stride,
nj_stride)

Complex transform in complex data format:

status = {C,Z}FFT_APPLY_2D (input_format, output_format, direction, in, out, lda, fft_struct, ni_stride,
nj_stride)

Complex transform in real data format:

status = {C,Z}FFT_APPLY_2D (input_format, output_format, direction, in_real, in_imag, out_real,
out_imag, lda, fft_struct, ni_stride, nj_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex data, the type of data determines what other arguments are needed.
When both the input and output data are real, the complex routines store the
data as separate arrays for imaginary and real data so additional arguments are
needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
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Both the arguments are two-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

in_real, out_real, in_imag, out_imag
real*4 | real*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

lda
integer*4
Specifies the number of rows in the IN and OUT arrays; lda�ni. For {S,D}
routines, lda�ni + 2 when the input format is ’ R’ and the output format is ’ C’

or the input format is ’ C’ and the output format is ’ R’ .

fft_struct
record /dxml_s_fft_structure_2d/ for single-precision real operations
record /dxml_d_fft_structure_2d/ for double-precision real operations
record /dxml_c_fft_structure_2d/ for single-precision complex operations
record /dxml_z_fft_structure_2d/ for double-precision complex operations
The argument refers to the structure created by the _2D_INIT routine.

ni_stride, nj_stride
integer*4
Specifies the distance between consecutive elements in a column and row in the
IN and OUT arrays; the valid stride depends on the _INIT routine; ni_stride � 1,
nj_stride � 1.

Description

The _FFT_APPLY_2D routines compute the fast Fourier transform of two-
dimensional data in either the forward or backward direction. These routines
are the second step of the three-step procedure. They compute the fast forward
or inverse Fourier transform, using the internal data structures created by the
_FFT_2D_INIT subroutine.

Use the _APPLY_2D routines with their corresponding _INIT_2D and _EXIT_2D
routines. For example, use SFFT_APPLY after the SFFT_INIT and end with the
SFFT_EXIT routine. See Section 11.1.3.2 for an explanation of real and complex
data format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
11 DXML_ILL_LDA( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
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16 DXML_BAD_FORMAT_STRING( )
18 (for real transform only) DXML_BAD_FORMAT_FOR_DIRECTION( )

Examples

1. INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, STATUS, LDA
REAL*8 A(1026,512), B(1026,513)
RECORD /DXML_D_FFT_STRUCTURE_2D/ FFT_STRUCT
N_I = 1024
N_J = 512
LDA = 1026
STATUS = DFFT_INIT_2D(N_I,N_J,FFT_STRUCT,.TRUE.)
STATUS = DFFT_APPLY_2D(’R’,’C’,’F’,A,B,LDA,FFT_STRUCT,1,1)
STATUS = DFFT_EXIT_2D(FFT_STRUCT)

This Fortran code computes the forward, two-dimensional, real FFT of a
1024x512 matrix A. The result of the transform is stored in B in complex
form. The leading dimension of B is 1026 in order to hold the extra complex
values (see section on data storage). Also the input matrix A also requires a
leading dimension of at least 1026.

2. INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, STATUS, LDA
COMPLEX*16 A(1024,512), B(1024,512)
RECORD /DXML_Z_FFT_STRUCTURE_2D/ FFT_STRUCT
N_I = 1024
N_J = 512
LDA = 1024
STATUS = ZFFT_INIT_2D(N_I,N_J,FFT_STRUCT,.TRUE.)

STATUS = ZFFT_APPLY_2D(’C’,’C’,’F’,A,B,LDA,FFT_STRUCT,1,1)
STATUS = ZFFT_EXIT_2D(FFT_STRUCT)

This Fortran code computes the forward, two-dimensional, complex FFT of a
matrix A, of dimension 1024 by 512. The result of the transform is stored in
B in complex form.
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_FFT_EXIT_2D
Final Step for Fast Fourier Transform in Two Dimensions
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_EXIT_2D (fft_struct)

Arguments

fft_struct
record /dxml_s_fft_structure/ for single-precision real operations
record /dxml_d_fft_structure/ for double-precision real operations
record /dxml_c_fft_structure/ for single-precision complex operations
record /dxml_z_fft_structure/ for double-precision complex operations
This argument must be included but it is not necessary to modify it in any way.
It refers to the data structure that was created in the initialization step.

Description

The _FFT_EXIT_2D functions remove the internal data structures created in
the _FFT_INIT_2D functions. These functions are the final step in a three-
step procedure. They release the virtual memory that was allocated by the
_FFT_INIT_2D functions.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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_FFT_3D
Fast Fourier Transform in Three Dimensions
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT_3D (input_format, output_format, direction, in, out, ni, nj, nk, lda_i, lda_j, ni_stride,
nj_stride, nk_stride)

Complex transforms in complex format:

status = {C,Z}FFT_3D (input_format, output_format, direction, in, out, ni, nj, nk, lda_i, lda_j, ni_stride,
nj_stride, nk_stride)

Complex transform in real data format:

status = {C,Z}FFT_3D (input_format, output_format, direction, in_real, in_imag, out_real, out_imag, ni,
nj, nk, lda_i, lda_j, ni_stride, nj_stride, nk_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex data, the type of data determines what other arguments are needed.
When both the input and output data are real, the complex routines store the
data as separate arrays for imaginary and real data so additional arguments are
needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.
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in, out
real*4 | real*8 | complex*8 | complex*16
Both the arguments are three-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

in_real, out_real, in_imag, out_imag
REAL*4 | REAL*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

ni, nj, nk
integer*4
Specifies the size of the first, second, and third dimension of data in the input
array; ni > 0, nj > 0, nk > 0. For SFFT_3D and DFFT_3D, ni must be even.

lda_i, lda_j
integer*4
Specifies the number of rows and columns in the IN and OUT arrays; lda_i� ni,
lda_j � nj . For {S,D} routines, lda_i � ni+ 2 when the input format is ’ R’ and
the output format is ’ C’ or the input format is ’ C’ and the output format ’ R’ .

ni_stride, nj_stride, nk_stride
integer*4
Specifies the distance between consecutive elements in the IN and OUT arrays;
ni_stride � 1, nj_stride � 1, nk_stride � 1.

Description

The _FFT_3D routines compute the fast forward or inverse Fourier transform of
three-dimensional data in one step.

The SFFT_3D and DFFT_3D functions perform the forward Fourier transform of
a real sequence and store the result in either real or complex data format. These
functions also perform the inverse Fourier transform of a complex sequence into a
real sequence.

The CFFT_3D and ZFFT_3D functions perform Fourier transforms on a complex
sequence. However, the argument list is different, depending on the data format
in which the output data is stored. See Section 11.1.3.2 for an explanation of real
and complex data format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
4 (with real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
11 DXML_ILL_LDA( )
12 DXML_INS_RES( )
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13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
16 DXML_BAD_FORMAT_STRING( )
18 DXML_BAD_FORMAT_FOR_DIRECTION( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, N_K, STATUS, LDA_I, LDA_J
REAL*8 A(130,128,128), B(130,128,128)
N_I = 128
N_J = 128
N_K = 128
LDA_I = 130
LDA_J = 128
STATUS = DFFT_3D(’R’,’C’,’F’,A,B,N_I,N_J,N_K,LDA_I,LDA_J,1,1,1)

This Fortran code computes the forward, three-dimensional, real FFT of a
128x128x128 matrix A. The result of the transform is stored in B in complex
form. The leading dimension of B is 130 to hold the extra complex values (see
section on data storage). Also the input matrix A requires a leading dimension of
at least 130.

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, N_K, STATUS, LDA_I, LDA_J
COMPLEX*8 A(130,128,128), B(130,128,128)
N_I = 128
N_J = 128
N_K = 128
LDA_I = 128
LDA_J = 128
STATUS = CFFT_3D(’C’,’C’,’F’,A,B,N_I,N_J,N_K,LDA_I,LDA_J,1,1,1)

This Fortran code computes the forward, three-dimensional, complex FFT of a
matrix A, of dimension 128x128x128. The result of the transform is stored in B
in complex form.
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_FFT_INIT_3D
Initialization Step for Fast Fourier Transform in Three Dimensions
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_INIT_3D (ni, nj, nk, fft_struct, ni_stride_1_flag)

Arguments

ni, nj, nk
integer*4
Specifies the size of the first, second, and third dimension of data in the input
array; ni > 0, nj > 0, nk > 0. For SFFT_INIT_3D and DFFT_INIT_3D, ni must
be even.

fft_struct
record /dxml_s_fft_structure_3d/ for single-precision real operations
record /dxml_d_fft_structure_3d/ for double-precision real operations
record /dxml_c_fft_structure_3d/ for single-precision complex operations
record /dxml_z_fft_structure_3d/ for double-precision complex operations
This argument must be included but needs no additional definitions. The
argument is declared in the program before this routine. See Section 11.1.3.3 for
more information.

ni_stride_1_flag
logical
Specifies whether to allow a stride of more than 1 between elements in the row:

TRUE: Stride must be 1.
FALSE: Stride is at least 1.

Description

The _FFT_INIT_3D functions build internal data structures needed to compute
fast Fourier transforms of three-dimensional data. These routines are the first
step in a three-step procedure. They create the internal data structures, using
attributes defined in the file DXMLDEF.FOR.

Use the initialization routine that is appropriate for the data format. Then,
use the corresponding application and exit steps to complete the procedure.
For example, use the SFFT_3D_INIT routine with the SFFT_3D_APPLY and
SFFT_3D_EXIT routine.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Return Values

0 DXML_SUCCESS( )
4 (real transform only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
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_FFT_APPLY_3D
Application Step for Fast Fourier Transform in Three Dimensions
(Serial and Parallel Versions)

Format
Real transform:

status = {S,D}FFT_APPLY_3D (input_format, output_format, direction, in, out, lda_i, lda_j, fft_struct,
ni_stride, nj_stride, nk_stride)

Complex transforms in complex format:

status = {C,Z}FFT_APPLY_3D (input_format, output_format, direction, in, out, lda_i, lda_j, fft_struct,
ni_stride, nj_stride, nk_stride)

Complex transform in real data format:

status = {C,Z}FFT_APPLY_3D (input_format, output_format, direction, in_real, in_imag, out_real,
out_imag, lda_i, lda_j, fft_struct, ni_stride, nj_stride, nk_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex data, the type of data determines what other arguments are needed.
When both the input and output data are real, the complex routines store the
data as separate arrays for imaginary and real data so additional arguments are
needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.
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in, out
real*4 | real*8 | complex*8 | complex*16
Both the arguments are three-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

in_real, out_real, in_imag, out_imag
REAL*4 | REAL*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

lda_i, lda_j
integer*4
Specifies the number of rows and columns in the IN and OUT arrays; lda_i� ni,
lda_j � nj . For {S,D} routines, lda_i � ni+ 2 when the input format is ’ R’ and
the output format is ’ C’ or the input format is ’ C’ and the output format is ’ R’ .

fft_struct
record /dxml_s_fft_structure_3d/ for single-precision real operations
record /dxml_d_fft_structure_3d/ for double-precision real operations
record /dxml_c_fft_structure_3d/ for single-precision complex operations
record /dxml_z_fft_structure_3d/ for double-precision complex operations
The argument refers to the structure created by the _INIT routine.

ni_stride, nj_stride, nk_stride
integer*4
Specifies the distance between consecutive elements in the IN and OUT arrays;
the valid stride depends on the _INIT routine. ni_stride � 1, nj_stride � 1,
nk_stride � 1.

Description

The _FFT_APPLY_3D routines compute the fast Fourier transform of three-
dimensional data in either the forward or backward direction. These routines
are the second step of the three-step procedure for the fast Fourier transform
of three-dimensional data. They compute the fast forward or inverse Fourier
transform, using the internal data structures created by the _FFT_3D_INIT
subroutine.

Use the _APPLY_3D routines with their corresponding _INIT_3D and _EXIT_3D
routines. For example, use SFFT_APPLY after the SFFT_INIT and end with the
SFFT_EXIT routine. See Section 11.1.3.2 for an explanation of real and complex
data format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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Return Values

0 DXML_SUCCESS( )
11 DXML_ILL_LDA( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
18 (for real transform only) DXML_BAD_FORMAT_FOR_DIRECTION( )
15 DXML_BAD_DIRECTION_STRING( )
16 DXML_BAD_FORMAT_STRING( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_I, N_J, N_K, STATUS, LDA_I, LDA_J
REAL*8 A(130,128,128), B(130,128,128)
RECORD /DXML_D_FFT_STRUCTURE_3D/ FFT_STRUCT
N_I = 128
N_J = 128
N_K = 128
LDA_I = 130
LDA_J = 128
STATUS = DFFT_INIT_3D(N_I,N_J,N_K,FFT_STRUCT,.TRUE.)
STATUS = DFFT_APPLY_3D(’R’,’C’,’F’,A,B,LDA_I,LDA_J,FFT_STRUCT,1,1,1)
STATUS = DFFT_EXIT_3D(FFT_STRUCT)

This Fortran code computes the forward, three-dimensional, real FFT of a
128x128x128 matrix A. The result of the transform is stored in B in complex
form. The leading dimension of B is 130 to hold the extra complex values (see
section on data storage). Also the input matrix A requires a leading dimension of
at least 130.

11–64 Fast Fourier Transform Routines



_FFT_EXIT_3D

_FFT_EXIT_3D
Final Step for Fast Fourier Transform in Three Dimensions
(Serial and Parallel Versions)

Format

status = {S,D,C,Z}FFT_EXIT_3D (fft_struct)

Arguments

fft_struct
record /dxml_s_fft_structure/ for single-precision real operations
record /dxml_d_fft_structure/ for double-precision real operations
record /dxml_c_fft_structure/ for single-precision complex operations
record /dxml_z_fft_structure/ for double-precision complex operations
This argument must be included but it is not necessary to modify it in any way.
It refers to the data structure that was created in the initialization step.

Description

The _FFT_EXIT_3D functions remove the internal data structures created in
the _FFT_INIT_3D functions. These functions are the final step in a three-
step procedure. They release the virtual memory that was allocated by the
_FFT_INIT_3D functions.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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_FFT_GRP
Group Fast Fourier Transform in One Dimension

Format
Real transform:

status = {S,D}FFT_GRP (input_format, output_format, direction, in, out, n, grp_size, lda, stride,
grp_stride)

Complex transform in complex data format:

status = {C,Z}FFT_GRP (input_format, output_format, direction, in, out, n, grp_size, lda, stride,
grp_stride)

Complex transform real data format:

status = {C,Z}FFT_GRP (input_format, output_format, direction, in_real, in_imag, out_real, out_imag, n,
grp_size, lda, stride, grp_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex transforms, the type of data determines what other arguments are
needed. When both the input and output data are real, the complex functions
store the data as separate arrays for imaginary and real data so additional
arguments are needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
Both arguments are two-dimensional arrays. The IN array contains the data to
be transformed. The OUT array contains the transformed data. The IN and OUT
arrays can be the same array. The IN and OUT arrays must be the same size.
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in_real, in_imag, out_real, out_imag
real*4 | real*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

n
integer*4
Specifies the number of elements in the column within each one-dimensional data
array; n > 0. For SFFT_GRP and DFFT_GRP, n must be even.

grp_size
integer*4
Specifies the number of one-dimensional data arrays; grp_size> 0.

lda
integer*4
Specifies the the number of rows in two-dimensional data arrays; lda� grp_size.
Using lda = grp_size + f 3 or 5g can sometimes achieve better performance by
avoiding cache thrashing.

stride
integer*4
Specifies the distance between columns of active data arrays; stride�1. stride
permits columns of IN and OUT arrays to be skipped when they are not part of
the group.

grp_stride
integer*4
Specifies the distance between consecutive elements in a row in the IN and OUT
arrays; grp_stride � 1. grp_stride permits rows of IN and OUT arrays to be
skipped when they are not part of the group.

Description

_FFT_GRP computes the fast forward or inverse Fourier transform on a group
of one-dimensional data arrays. The transform is performed on the first row
of elements of one-dimensional data arrays within the group. Data arrays can
be skipped by setting the stride parameter. The transform then goes to the
next row of elements. Similarly, rows of elements can be skipped by setting the
grp_stride parameter. _FFT_GRP contrasts with _FFT in that _FFT performs
a transform on each element of a data array before going to the next data array.
Although _FFT_GRP gives the same result as _FFT, _FFT_GRP is more efficient
at completing the transform.

Return Values

0 DXML_SUCCESS( )
4 (real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
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16 DXML_BAD_FORMAT_STRING( )
18 (real transforms only) DXML_BAD_FORMAT_FOR_DIRECTION( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N,GRP_SIZE
REAL*8 A(100,514),B(100,514)
N=512
LDA=100
GRP_SIZE=100
STATUS=DFFT_GRP(’R’,’C’,’F’,A,B,N,GRP_SIZE,LDA,1,1)

This Fortran code computes a set of 100 FFT of size 512. The results of the
transforms are stored in B in complex format. The second dimension of A and B
is 514 to hold the extra complex values.
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_FFT_INIT_GRP
Initialization Step for Group Fast Fourier Transform in One Dimension

Format

status = {S,D,C,Z}FFT_INIT_GRP (n, fft_struct, grp_stride_1_flag, max_grp_size)

Arguments

n
integer*4
Specifies the number of elements in the column within each one-dimensional data
array; n > 0. For SFFT_INIT_GRP and DFFT_INIT_GRP, n must be even.

fft_struct
record /dxml_s_grp_fft_structure/ for single-precision real operations
record /dxml_d_grp_fft_structure/ for double-precision real operations
record /dxml_c_grp_fft_structure/ for single-precision complex operations
record /dxml_z_grp_fft_structure/ for double-precision complex operations
You must include this argument but it needs no additional definitions. The
argument is declared in the program before this routine. See Section 11.1.3.3 for
more information.

grp_stride_1_flag
logical
Specifies whether to allow a distance greater than 1 between elements:

TRUE: Group stride must be 1.
FALSE: Group stride is at least 1.

max_grp_size
integer*4
Specifies the expected number of sets of data. If unknown, set max_grp_size = 0.

Description

The _FFT_INIT_GRP functions build internal data structures needed to compute
fast Fourier transforms of one-dimensional data. These routines are the first
step in a three-step procedure. They create the internal data structures, using
attributes defined in the file DXMLDEF.FOR.

Return Values

0 DXML_SUCCESS( )
4 (real transforms only) DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
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_FFT_APPLY_GRP
Application Step for Group Fast Fourier Transform in One Dimension

Format
Real transform:

status = {S,D}FFT_APPLY_GRP (input_format, output_format, direction, in, out, grp_size, lda, fft_struct,
stride, grp_stride)

Complex transform of real data format:

status = {C,Z}FFT_APPLY_GRP (input_format, output_format, direction, in, out, grp_size, lda, fft_struct,
stride, grp_stride)

Complex transform of real data to real data:

status = {C,Z}FFT_APPLY_GRP (input_format, output_format, direction, in_real, in_imag, out_real,
out_imag, grp_size, lda, fft_struct, stride, grp_stride)

Arguments

input_format, output_format
character*(*)
Identifies the data type of the input and the format to be used to store the data,
regardless of the data type. For example, a complex sequence can be stored in
real format.

The character ’ R’ specifies the format as real; the character ’ C’ specifies the
format as complex. As convenient, use either uppercase or lowercase characters,
and either spell out or abbreviate the word.

The following table shows the valid values:

Subprogram Input Format Output Format Direction

{S,D} ’ R’ ’ C’ ’ F’

’ C’ ’ R’ ’ B’

’ R’ ’ R’ ’ F’ or ’ B’

{C,Z} ’ R’ ’ R’ ’ F’ or ’ B’

’ C’ ’ C’ ’ F’ or ’ B’

For complex transforms, the type of data determines what other arguments are
needed. When both the input and output data are real, the complex functions
store the data as separate arrays for imaginary and real data so additional
arguments are needed.

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8 | complex*8 | complex*16
Both arguments are two-dimensional arrays. The IN array contains the data to
be transformed. The OUT array contains the transformed data. The IN and OUT
arrays can be the same array.
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in_real, in_imag, out_real, out_imag
real*4 | real*8
Use these arguments when performing a complex transform on real data format
and storing the result in a real data format.

grp_size
integer*4
Specifies the number of one-dimensional data arrays; grp_size> 0.

lda
integer*4
Specifies the the number of rows in two-dimensional data arrays; lda� grp_size.
Using lda = grp_size + f 3 or 5g can sometimes achieve better performance by
avoiding cache thrashing.

fft_struct
record /dxml_s_grp_fft_structure/ for single-precision real operations
record /dxml_d_grp_fft_structure/ for double-precision real operations
record /dxml_c_grp_fft_structure/ for single-precision complex operations
record /dxml_z_grp_fft_structure/ for double-precision complex operations
The argument refers to the structure created by the _INIT routine.

stride
integer*4
Specifies the distance between columns of active data arrays; stride�1. stride
permits columns of IN and OUT arrays to be skipped when they are not part of
the group.

grp_stride
integer*4
Specifies the distance between consecutive elements in a row in the IN and OUT
arrays; grp_stride � 1. grp_stride permits rows of IN and OUT arrays to be
skipped when they are not part of the group.

Description

The _FFT_APPLY_GRP computes the fast forward or inverse Fourier transform
on a group of one-dimensional data arrays. The transform is performed on the
first row of elements of one-dimensional data arrays within the group. Data
arrays can be skipped by setting the stride parameter. The transform then goes
to the next row of elements. Similarly, rows of elements can be skipped by setting
the grp_stride parameter. _FFT_APPLY_GRP contrasts with _FFT_APPLY
in that _FFT_APPLY performs a transform on each element of a data array
before going to the next data array. Although _FFT_APPLY_GRP gives the same
result as _FFT_APPLY, _FFT_APPLY_GRP is more efficient at completing the
transform.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
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16 DXML_BAD_FORMAT_STRING( )
18 (real transform only) DXML_BAD_FORMAT_FOR_DIRECTION( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 GRP_SIZE,N,STATUS
REAL*8 A(100,514),B(100,514)
RECORD /DXML_D_GRP_FFT_STRUCTURE/FFT_STRUCT
GRP_SIZE=100
N=512
LDA=100
STATUS = DFFT_INIT_GRP(N,FFT_STRUCT,.TRUE.,100)
STATUS = DFFT_APPLY_GRP(’R’,’C’,’F’,A,B,GRP_SIZE,LDA,FFT_STRUCT,1,1)
STATUS = DFFT_EXIT_GRP(FFT_STRUCT)

This Fortran code computes a set of 100 FFT of size 512. The results of the
transforms are stored in B in complex format. The second dimension is 514 to
hold the extra complex values.
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_FFT_EXIT_GRP
Exit Step for Group Fast Fourier Transform in One Dimension

Format

status = {S,D,C,Z}FFT_EXIT_GRP (fft_struct)

Arguments

fft_struct
record /dxml_s_grp_fft_structure/ for single-precision real operations
record /dxml_d_grp_fft_structure/ for double-precision real operations
record /dxml_c_grp_fft_structure/ for single-precision complex operations
record /dxml_z_grp_fft_structure/ for double-precision complex operations
This argument must be included but it is not necessary to modify it in any way.
It refers to the data structure that was created in the initialization step.

Description

The _FFT_EXIT_GRP functions remove the internal data structures created in
the _FFT_INIT_GRP functions. These functions are the final step in a three-
step procedure. They release the virtual memory that was allocated by the
_FFT_INIT_GRP functions.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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_FCT
Fast Cosine Transform in One Dimension

Format

status = {S,D}FCT (direction, in, out, n, type, stride)

Arguments

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8
Both the arguments are one-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data. For type-I FCT, the length of the
IN,OUT array must >= N + 1. For type-II FCT, the length of the IN,OUT array
must be >= N .

n
integer*4
Specifies the size of the transform. The minimum size of the IN, OUT array is n;
where n> 0 and even.

type
integer*4
Specifies the type of the Cosine transform desired. Currently only type-1 and
type-2 transforms are supported.

stride
integer*4
Specifies the distance between consecutive elements in the IN and OUT arrays.
The distance must be at least 1.

Description

The _FCT functions compute the fast Cosine transform of one-dimensional data
in one step.

Return Values

0 DXML_SUCCESS( )
4 DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
17 DXML_OPTION_NOT_SUPPORTED( )
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Example

INTEGER*4 N
PARAMETER (N=1024)

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 STATUS
REAL*8 C(0:N),D(0:N)
REAL*4 E(1:N-1),F(1:N-1)

STATUS = DFCT(’F’,C,D,N,1,1)
STATUS = DFCT(’B’,D,C,N,1,1)
STATUS = SFCT(’F’,E,F,N,2,1)
STATUS = SFCT(’B’,F,E,N,2,1)

This Fortran code computes the following:

• Forward Type-1 Cosine transform of the real sequence C to real sequence D.

• Backward Type-1 Cosine transform of the real sequence D to real sequence C.

• Forward Type-2 Cosine transform of the real sequence E to real sequence F.

• Backward Type-2 Cosine transform of the real sequence F to real sequence E.
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_FCT_INIT
Initialization Step for Fast Cosine Transform in One Dimension

Format

status = {S,D}FCT_INIT (n, fct_struct, type, stride_1_flag)

Arguments

n
integer*4
Specifies the size of the transform. n must be even and > 0.

fct_struct
record /dxml_s_fct_structure/ for single-precision operations
record /dxml_d_fct_structure/ for double-precision operations

type
integer*4
Specifies the type of Cosine transform desired. Currently only type-1 and type-2
transforms are supported.

stride_1_flag
logical
Specifies the allowed distance between consecutive elements in the input and
output arrays:

TRUE: Stride must be 1.
FALSE: Stride is at least 1.

Description

The _FCT_INIT functions build internal data structures needed to compute fast
Cosine transforms of one-dimensional data. These functions are the first step in
a three-step procedure. They create the internal data structures, using attributes
defined in the file DXMLDEF.FOR.

Use the initialization function that is appropriate for the data format. Then use
the corresponding application and exit functions to complete the transform. For
example, use SFCT_INIT for the internal data structures used by SFCT_APPLY
and end with the SFCT_EXIT function.

Return Values

0 DXML_SUCCESS( )
4 DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
17 DXML_OPTION_NOT_SUPPORTED( )
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_FCT_APPLY
Application Step for Fast Cosine Transform in One Dimension

Format

status = {S,D}FCT_APPLY (direction, in, out, fct_struct, stride)

Arguments

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8
Both the arguments are one-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

fct_struct
record /dxml_s_fct_structure/ for single-precision operations
record /dxml_d_fct_structure/ for double-precision operations

stride
integer*4
Specifies the distance between consecutive elements in the input and output
arrays, depending on the value of stride_1_flag provided in the _INIT function.

Description

The _FCT_APPLY functions compute the fast Cosine transform of one-
dimensional data in three steps.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
17 DXML_OPTION_NOT_SUPPORTED( )

Example

INTEGER*4 N
PARAMETER (N=1024)

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 STATUS
RECORD /DXML_S_FCT_STRUCTURE/ D_FCT_STRUCT
RECORD /DXML_D_FCT_STRUCTURE/ D_FCT_STRUCT
REAL*8 C(0:N),D(0:N)
REAL*4 E(0:N-1),F(0:N-1)
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STATUS = DFCT_INIT(N,D_FCT_STRUCT,1,.TRUE.)
STATUS = DFCT_APPLY(’F’,C,D,D_FCT_STRUCT,1)
STATUS = DFCT_APPLY(’B’,D,C,D_FCT_STRUCT,1)
STATUS = DFCT_EXIT(D_FCT_STRUCT)

STATUS = SFCT_INIT(N,S_FCT_STRUCT,2,.TRUE.)
STATUS = SFCT_APPLY(’F’,E,F,S_FCT_STRUCT,1)
STATUS = SFCT_APPLY(’B’,F,E,S_FCT_STRUCT,1)
STATUS = SFCT_EXIT(D_FCT_STRUCT)

This Fortran code computes the following:

• Forward Type-1 Cosine transform of the real sequence C to real sequence D.

• Backward Type-1 Cosine transform of the real sequence D to real sequence C.

• Forward Type-2 Cosine transform of the real sequence E to real sequence F.

• Backward Type-2 Cosine transform of the real sequence F to real sequence E.
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_FCT_EXIT
Final Step for Fast Cosine Transform in One Dimension

Format

status = {S,D}FCT_EXIT (fct_struct)

Arguments

fct_struct
record /dxml_s_fct_structure/ for single-precision operations
record /dxml_d_fct_structure/ for double-precision operations

Description

The _FCT_EXIT functions remove the internal data structures created in
the _FCT_INIT functions. These functions are the final step in a three-step
procedure. They release the virtual memory that was allocated by the _FCT_INIT
functions.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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_FST
Fast Sine Transform in One Dimension

Format

status = {S,D}FST (direction, in, out, n, type, stride)

Arguments

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8
Both the arguments are one-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

n
integer*4
Specifies the size of the transform. The minimum size of the IN, OUT array is n;
where n> 0 and even.

type
integer*4
Specifies the type of Sine transform desired. Currently only type-1 and type-2
transforms are supported.

stride
integer*4
Specifies the distance between consecutive elements in the input and output
arrays. The distance must be at least 1.

Description

The _FST functions compute the fast type-1 and type-2 Sine transform of
one-dimensional data in one step.

Return Values

0 DXML_SUCCESS( )
4 DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
17 DXML_OPTION_NOT_SUPPORTED( )
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Example

INTEGER*4 N
PARAMETER (N=1024)

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 STATUS
REAL*8 C(1:N),D(1:N)
REAL*4 E(1:N),F(1:N)

STATUS = DFST(’F’,C,D,N,1,1)
STATUS = DFST(’B’,D,C,N,1,1)
STATUS = SFST(’F’,E,F,N,2,1)
STATUS = SFST(’B’,F,E,N,2,1)

This Fortran code computes the following:

• Forward Type-1 Sine transform of the real sequence C to real sequence D.

• Backward Type-1 Sine transform of the real sequence D to real sequence C.

• Forward Type-2 Sine transform of the real sequence E to real sequence F.

• Backward Type-2 Sine transform of the real sequence F to real sequence E.
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_FST_INIT
Initialization Step for Fast Sine Transform in One Dimension

Format

status = {S,D}FST_INIT (n, fst_struct, type, stride_1_flag)

Arguments

n
integer*4
Specifies the size of the transform. n must be even and > 0.

fst_struct
record /dxml_s_fst_structure/ for single-precision operations
record /dxml_d_fst_structure/ for double-precision operations

type
integer*4
Specifies the type of Sine transform desired. Currently only type-1 and type-2
transforms are supported.

stride_1_flag
logical
Specifies the allowed distance between consecutive elements in the input and
output arrays:

TRUE: Stride must be 1.
FALSE: Stride is at least 1.

Description

The _FST_INIT functions build internal data structures needed to compute fast
Sine transforms of one-dimensional data. These functions are the first step in a
three-step procedure. They create the internal data structures, using attributes
defined in the file DXMLDEF.FOR.

Use the initialization function that is appropriate for the data format. Then use
the corresponding application and exit functions to complete the transform. For
example, use SFST_INIT for the internal data structures used by SFST_APPLY
and end with the SFST_EXIT function.

Return Values

0 DXML_SUCCESS( )
4 DXML_ILL_N_IS_ODD( )
8 DXML_ILL_N_RANGE( )
12 DXML_INS_RES( )
17 DXML_OPTION_NOT_SUPPORTED( )

Cosine and Sine Routines 11–85



_FST_APPLY

_FST_APPLY
Application Step for Fast Sine Transform in One Dimension

Format

status = {S,D}FST_APPLY (direction, in, out, fst_struct, stride)

Arguments

direction
character*(*)
Specifies the operation as either the forward or inverse transform. Use ’ F’ or ’ f’
to specify the forward transform. Use ’ B’ or ’ b’ to specify the inverse transform.

in, out
real*4 | real*8
Both the arguments are one-dimensional arrays. The input and output arrays
can be the same array. The IN array contains the data to be transformed. The
OUT array contains the transformed data.

fst_struct
record /dxml_s_fst_structure/ for single-precision operations
record /dxml_d_fst_structure/ for double-precision operations

stride
integer*4
Specifies the distance between consecutive elements in the input and output
arrays, depending on the value of stride_1_flag provided in the _INIT function.

Description

The _FST_APPLY functions compute the fast Sine transform of one-dimensional
data in three steps.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
13 DXML_BAD_STRIDE( )
15 DXML_BAD_DIRECTION_STRING( )
17 DXML_OPTION_NOT_SUPPORTED( )

Example

INTEGER*4 N
PARAMETER (N=1024)

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 STATUS
RECORD /DXML_S_FST_STRUCTURE/ D_FST_STRUCT
RECORD /DXML_D_FST_STRUCTURE/ D_FST_STRUCT
REAL*8 C(1:N),D(1:N)
REAL*4 E(1:N),F(1:N)
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STATUS = DFST_INIT(N,D_FST_STRUCT,1,.TRUE.)
STATUS = DFST_APPLY(’F’,C,D,D_FST_STRUCT,1)
STATUS = DFST_APPLY(’B’,D,C,D_FST_STRUCT,1)
STATUS = DFST_EXIT(D_FST_STRUCT)

STATUS = SFST_INIT(N,S_FST_STRUCT,2,.TRUE.)
STATUS = SFST_APPLY(’F’,E,F,S_FST_STRUCT,1)
STATUS = SFST_APPLY(’B’,F,E,S_FST_STRUCT,1)
STATUS = SFST_EXIT(D_FST_STRUCT)

This Fortran code computes the following:

• Forward Type-1 Sine transform of the real sequence C to real sequence D.

• Backward Type-1 Sine transform of the real sequence D to real sequence C.

• Forward Type-2 Sine transform of the real sequence E to real sequence F.

• Backward Type-2 Sine transform of the real sequence F to real sequence E.
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_FST_EXIT
Final Step for Fast Sine Transform in One Dimension

Format

status = {S,D}FST_EXIT (fst_struct)

Arguments

fst_struct
record /dxml_s_fst_structure/ for single-precision operations
record /dxml_d_fst_structure/ for double-precision operations

Description

The _FST_EXIT functions remove the internal data structures created in
the _FST_INIT functions. These functions are the final step in a three-step
procedure. They release the virtual memory that was allocated by the _FST_INIT
functions.

Return Values

0 DXML_SUCCESS( )
12 DXML_INS_RES( )
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Convolution and Correlation Subprograms

This section provides descriptions of the convolution and correlation subroutines.
The four versions of each routine are titled by name using a leading underscore
character. The section is ordered in the following way:

• By type of subprogram:

Convolution
Correlation

• By function within each type:

Nonperiodic
Periodic

• Extensions to each subprogram

The extended versions of each subprogram perform the same operation as the
corresponding short subprogram but the argument list controls the operation,
in the following way:

Specify a stride for both the input and output arrays

Scale the output by either a scalar or a vector

Add an output array to prior output, instead of overwriting

Operate on portions of the output array, instead of the entire array





_CONV_NONPERIODIC

_CONV_NONPERIODIC
Nonperiodic Convolution

Format

{S,D,C,Z}CONV_NONPERIODIC (x, y, out, nx, ny, status)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be convolved.
On exit, x is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the convolution or ‘‘filter’’ function that is to be
convolved with the data from the X array.
On exit, y is unchanged.

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length nx+ ny � 1.
On exit, out contains the convolved data.

nx
integer*4
On entry, the number of values to be convolved, that is, the length of the X array;
nx > 0.
On exit, nx is unchanged.

ny
integer*4
On entry, the length of the array containing the convolution function; ny > 0.
On exit, ny is unchanged.

status
integer*4

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )

Description

The _CONV_NONPERIODIC routines compute the nonperiodic convolution of
two arrays using a discrete summing technique.

Convolution and Correlation Routines 11–91



_CONV_NONPERIODIC

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_F, N_M, STATUS
REAL*4 A(500), B(15000), C(15499)
N_A = 500
N_B = 15000
CALL SCONV_NONPERIODIC(A,B,C,N_A,N_B,STATUS)

This Fortran code computes the nonperiodic convolution of two vectors of real
numbers, a and b, with lengths of 500 and 15000, respectively. The result is
stored in c with length of 15499.
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_CONV_PERIODIC
Periodic Convolution

Format

{S,D,C,Z}CONV_PERIODIC (x, y, out, n, status)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be convolved.
On exit, x is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the convolution or ‘‘filter’’ function that is to be
convolved with the data from the X array.
On exit, y is unchanged.

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length n.
On exit, out is overwritten and contains the convolved data.

n
integer*4
On entry, the length of the input arrays X and Y and the length of the output
array OUT; n > 0.
On exit, n is unchanged.

status
integer*4

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )

Description

The _CONV_PERIODIC functions compute the periodic convolution of two arrays
using a discrete summing technique.

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, STATUS
REAL*8 A(15000), B(15000), C(15000)
N = 15000
CALL DCONV_PERIODIC(A,B,C,N,STATUS)

This Fortran code computes the periodic convolution of two vectors of double-
precision real numbers, a and b, with lengths of 15000. The result is stored in c
with length of 15000.
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_CORR_NONPERIODIC
Nonperiodic Correlation

Format

{S,D,C,Z}CORR_NONPERIODIC (x, y, out, nx, ny, status)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be correlated.
On exit, x is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the function to be correlated with the data from the
X array.
On exit, y is unchanged.

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT with the length nx.
On exit, out contains the positive correlation coefficients.

nx
integer*4
On entry, the number of values to be correlated, that is, the length of the X array;
nx > 0.
On exit, nx is unchanged.

ny
integer*4
On entry, the length of the Y array containing the correlation function; ny > 0.
On exit, ny is unchanged.

status
integer*4

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )

Description

The _CORR_NONPERIODIC functions compute the nonperiodic correlation of
two arrays using a discrete summing technique.

11–94 Convolution and Correlation Routines



_CORR_NONPERIODIC

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N_F, N_M, STATUS
REAL*8 A(500), B(15000), C(500)
N_A = 500
N_B = 15000
CALL DCORR_NONPERIODIC(A,B,C,N_A,N_B,STATUS)

This Fortran code computes the nonperiodic correlation of two vectors of double-
precision real numbers, a and b, with lengths of 500 and 15000, respectively. The
result is stored in c with length of 15499.
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_CORR_PERIODIC
Periodic Correlation

Format

{S,D,C,Z}CORR_PERIODIC (x, y, out, n, status)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be correlated.
On exit, x is unchanged.

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the correlation function to be correlated with the
data from the X array.
On exit, y is unchanged.

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length n.
On exit, out contains the positive correlation coefficients.

n
integer*4
On entry, the length of the input arrays X and Y and the length of the output
array OUT; n > 0.
On exit, n is unchanged.

status
integer*4

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )

Description

The _CORR_PERIODIC computes the periodic correlation of two arrays using a
discrete summing technique.

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, STATUS
REAL*8 A(15000), B(15000), C(15000)
N = 15000
CALL DCORR_PERIODIC(A,B,C,N,STATUS)

This Fortran code computes the periodic correlation of two vectors of double-
precision real numbers, a and b, with lengths of 15000. The result is stored in c
with length of 15000.
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_CONV_NONPERIODIC_EXT
Extended Nonperiodic Convolution

Format

status = {S,D,C,Z}CONV_NONPERIODIC_EXT (x, nx_stride, y, ny_stride, out, out_stride, nx, ny,
n_out_start, n_out_end, add_flag, scale_flag, scale,
scale_stride)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be convolved.
On exit, x is unchanged.

nx_stride
integer*4
Distance between elements in the X array; nx_stride > 0

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the convolution or ‘‘filter’’ function that is to be
convolved with the data from the X array.
On exit, y is unchanged.

ny_stride
integer*4
Distance between elements in the Y array; ny_stride > 0

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length nx+ ny � 1.
On exit, out contains the convolution coefficients.

out_stride
integer*4
Specifies the distance between elements in the OUT array; out_stride > 0

nx, ny
integer*4
Specifies the number of values to be operated on; nx; ny > 0

n_out_start, n_out_end
integer*4
Specifies the range of coefficients computed; n_out_end > n_out_start. The OUT
array has zero values for indices less than 0 or greater than nx+ ny �2.

For example, in the case of nx = 50 and ny = 100, the range of locations is 0
through 148. If you specify n_out_start = 5 and n_out_end = 10, the convolution
function generates numbers for OUT(5) through OUT(10) and puts the results in
location 0 through 5 of the OUT array.
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You can also specify a range that is larger than the array, creating null elements
in the output array. For example, using the same input array, you can specify
n_out_start = -10 and n_out_end = 200. The convolution function can generate
values for 0 through 148, putting them in location 10 through 158 of the output
array. It puts null elements in the locations between 0 and 9 and between 159
and 200.

add_flag
logical*4
Defines the operation of the convolution to add output to an existing OUT array,
without overwriting it:

TRUE: Add the result of the operation to OUT array.
FALSE: Overwrite the existing OUT array.

scale_flag
logical*4
Defines the operation of the convolution to scale the output:

TRUE: Scale the output.
FALSE: Do not scale.

scale
real*4 | real*8 | complex*8 | complex*16
The value used to scale the output. The type of value depends on scale_stride.

scale_stride
integer*4
Defines how the scale operation is performed. scale_stride� 0:

= 0 : Scale by a scalar value
> 0: Scale by a vector, used as the stride of scale

Description

The _CONV_NONPERIODIC_EXT functions compute the nonperiodic convolution
with options to control the result.

Return Values

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )
13 DXML_BAD_STRIDE( )
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Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N,STATUS
REAL*8 A(50),B(100),C(6),SCALE_VALUE

SCALE_VALUE = 2.0
STATUS = DCONV_NONPERIODIC_EXT(A,1,B,1,C,1,50,100,5,10,.FALSE.,.TRUE.,

* SCALE_VALUE,0)

This Fortran code computes six values of a nonperiodic convolution of two vectors,
C(5) to C(10), of double-precision real numbers, a and b, with lengths of 50 and
100, respectively. The result is scaled by 2.0 and stored in c with length of 6.
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_CONV_PERIODIC_EXT
Extended Periodic Convolution

Format

status = {S,D,C,Z}CONV_PERIODIC_EXT (x, nx_stride, y, ny_stride, out, out_stride, n, n_out_start,
n_out_end, add_flag, scale_flag, scale, scale_stride)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be convolved.
On exit, x is unchanged.

nx_stride
integer*4
Distance between elements in the X array; nx_stride > 0

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the convolution or ‘‘filter’’ function that is to be
convolved with the data from the X array.
On exit, y is unchanged.

ny_stride
integer*4
Distance between elements in the Y array; ny_stride > 0

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length n.
On exit, out contains the convoluted data.

out_stride
integer*4
Specifies the distance between elements in the OUT array; out_stride > 0

n
integer*4
Specifies the number of values to be operated on; n > 0

n_out_start, n_out_end
integer*4
Specifies the range of coefficients computed; n_out_end > n_out_start. The OUT
array has zero values for indices less than 0 or greater than n� 1.

For example, in the case of n = 100, the locations range from 0 through 99. If you
specify n_out_start = 5 and n_out_end = 10, the convolution function generates
numbers for OUT(5) through OUT(10) and puts the results in location 0 through
5 of the OUT array.

You can also specify a range that is larger than the array. For example, using the
same input array, you can specify n_out_start = -10 and n_out_end = 200. The
convolution function can generate values OUT(0) through OUT(99), putting them
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in location 10 through 109 of the output array. The locations outside of the range
do not get null values; they are not affected.

add_flag
logical*4
Defines the operation of the convolution to add output to an existing OUT array,
without overwriting it:

TRUE: Add the result of the operation to OUT array.
FALSE: Overwrite the existing OUT array.

scale_flag
logical*4
Defines the operation of the convolution to scale the output:

TRUE: Scale the output.
FALSE: Do not scale.

scale
real*4 | real*8 | complex*8 | complex*16
The value by which to scale the output.

scale_stride
integer*4
Defines how the scale operation is performed. scale_stride� 0:

= 0 : Scale by a scalar value
> 0: Scale by a vector, used as the stride of scale

Description

The _CONV_PERIODIC_EXT functions compute the periodic convolution with
options to control the result.

Return Values

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )
13 DXML_BAD_STRIDE( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N,STATUS
REAL*8 A(100),B(100),C(6),SCALE_VALUE

SCALE_VALUE = 2.0
STATUS = DCONV_PERIODIC_EXT(A,1,B,1,C,1,100,5,10,.FALSE.,.TRUE.,SCALE_VALUE,0)

This Fortran code computes six values of a periodic convolution of two vector, C(5)
to C(10), of double-precision real numbers, a and b, with length of 100. The result
is scaled by 2.0 and stored in c with length of 6.
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_CORR_NONPERIODIC_EXT
Extended Nonperiodic Correlation

Format

status = {S,D,C,Z}CORR_NONPERIODIC_EXT (x, nx_stride, y, ny_stride, out, out_stride, nx, ny,
n_out_start, n_out_end, add_flag, scale_flag, scale,
scale_stride)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be correlated.
On exit, x is unchanged.

nx_stride
integer*4
Distance between elements in the X array; nx_stride > 0

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the function that is to be correlated with the data
from the X array.
On exit, y is unchanged.

ny_stride
integer*4
Distance between elements in the Y array; ny_stride > 0

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length nx+ ny � 1.
On exit, out contains the correlated data.

out_stride
integer*4
Specifies the distance between elements in the OUT array; out_stride > 0

nx, ny
integer*4
Specifies the number of values to be operated on; nx; ny > 0

n_out_start, n_out_end
integer*4
Specifies the range of coefficients computed; n_out_end > n_out_start. The OUT
array has zero values for indices less than 1� ny or greater than nx� 1.

For example, in the case of nx = 50 and ny = 100, the range of locations is -99
through 49. If you specify n_out_start = 5 and n_out_end = 10, the correlation
function generates numbers for OUT(5) through OUT(10) and puts the results in
location 0 through 5 of the OUT array.
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You can also specify a range that is larger than the array, creating null elements
in the output array. For example, using the same input array, you can specify
n_out_start = -110 and n_out_end = 60. The correlation function can generate
values for OUT(-99) through OUT(49), putting the results in locations 11 through
159. The locations 0 through 10 and 160 through 170 have no values, because
OUT(-110) through OUT(-100) and OUT(50) through OUT(60) are out of range.

add_flag
logical*4
Defines the operation of the correlation to add output to an existing OUT array,
without overwriting it:

TRUE: Add the result of the operation to OUT array.
FALSE: Overwrite the existing OUT array.

scale_flag
logical*4
Defines the operation of the correlation to scale the output:

TRUE: Scale the output.
FALSE: Do not scale.

scale
real*4 | real*8 | complex*8 | complex*16
The value by which to scale the output.

scale_stride
integer*4
Defines how the scale operation is performed. scale_stride� 0:

= 0 : Scale by a scalar value
> 0: Scale by a vector, used as the stride of scale

Description

The _CORR_NONPERIODIC_EXT functions compute the nonperiodic correlation
with options to control the result.

Return Values

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )
13 DXML_BAD_STRIDE( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N,STATUS
REAL*8 A(50),B(100),C(6),SCALE_VALUE

SCALE_VALUE = 2.0
STATUS = DCORR_NONPERIODIC_EXT(A,1,B,1,C,1,50,100,-99,-94,

* .FALSE.,.TRUE.,SCALE_VALUE,0)
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This Fortran code computes six values of a nonperiodic correlation of two vectors,
C(-99) to C(-94), of double-precision real numbers, a and b, with lengths of 50 and
100, respectively. The result is scaled by 2.0 and stored in c with a length of 6.
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_CORR_PERIODIC_EXT
Extended Periodic Correlation

Format

status = {S,D,C,Z}CORR_PERIODIC_EXT (x, nx_stride, y, ny_stride, out, out_stride, n, n_out_start,
n_out_end, add_flag, scale_flag, scale, scale_stride)

Arguments

x
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the data to be correlated.
On exit, x is unchanged.

nx_stride
integer*4
Distance between elements in the X array; nx_stride > 0

y
real*4 | real*8 | complex*8 | complex*16
On entry, an array containing the function that is to be correlated with the data
from the X array.
On exit, y is unchanged.

ny_stride
integer*4
Distance between elements in the Y array; ny_stride > 0

out
real*4 | real*8 | complex*8 | complex*16
On entry, a one-dimensional array OUT of length n.
On exit, out contains the correlated data.

out_stride
integer*4
Specifies the distance between elements in the OUT array; out_stride > 0

n
integer*4
Specifies the number of values to be operated on; n > 0

n_out_start, n_out_end
integer*4
Specifies the range of coefficients computed; n_out_end > n_out_start. The OUT
array has zero values for indices less than 0 or greater than n� 1.

For example, in the case of n = 100, the locations range from 0 through 99. If you
specify n_out_start = 5 and n_out_end = 10, the correlation function generates
numbers for OUT(5) through OUT(10) and puts the results in location 0 through
5 of the OUT array.

You can also specify a range that is larger than the array. For example, using the
same input array, you can specify n_out_start = -10 and n_out_end = 200. The
convolution function can generate values OUT(0) through OUT(99), putting them
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in location 10 through 109 of the output array. The locations outside of the range
do not get null values; they are not affected.

add_flag
logical*4
Defines the operation of the function to add the output to an existing OUT array,
without overwriting it:

TRUE: Add the result of the operation to OUT array.
FALSE: Overwrite the existing OUT array.

scale_flag
logical*4
Defines the operation of the function to multiply the output by a factor:

TRUE: Scale the output.
FALSE: Do not scale.

scale
real*4 | real*8 | complex*8 | complex*16
The value by which to scale the output.

scale_stride
integer*4
Defines how the scale operation is performed. scale_stride � 0:

= 0 : Scale by a scalar value
> 0: Scale by a vector, used as the stride of scale

Description

The _CORR_PERIODIC_EXT functions compute the periodic correlation with
options to control the result.

Return Values

0 DXML_SUCCESS( )
8 DXML_ILL_N_RANGE( )
13 DXML_BAD_STRIDE( )

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N,STATUS
REAL*8 A(100),B(100),C(6),SCALE_VALUE

SCALE_VALUE = 2.0
STATUS = DCORR_PERIODIC_EXT(A,1,B,1,C,1,100,5,10,.FALSE.,.TRUE.,SCALE_VALUE,0)

This Fortran code computes six values of a periodic convolution of two vectors,
C(5) to C(10), of double-precision real numbers, a and b, with length of 100. The
result is scaled by 2.0 and stored in c with a length of 6.
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Filter Subprograms

This section provides descriptions of the filter subroutines. The filter subroutines
are ordered by the type of filter: the one-step filter subprogram, then the two-step
filter subprograms.





SFILTER_NONREC

SFILTER_NONREC
Nonrecursive Filter

The SFILTER_NONREC subroutine performs filtering in lowpass, highpass,
bandpass, or bandstop (notch) mode.

Format

SFILTER_NONREC (in, out, n, flow, fhigh, wiggles, nterms, [status])

Arguments

in
REAL*4
On entry, a one-dimensional array IN containing the data to be filtered.
On exit, in is unchanged.

out
REAL*4
On entry, a one-dimensional array OUT containing the filtered data. The IN and
OUT arrays can be the same array.
On exit, out is overwritten and contains the filtered data.

n
INTEGER*4
On entry, the number of values to be filtered; n > 2 and n � 2(nterms) + 1.
On exit, n is unchanged.

flow
REAL*4
On entry, the lower frequency of the filter, given as a fraction of the Nyquist
sampling frequency 1=(2�t); 0:0 � flow � 1:0.
On exit, flow is unchanged.

fhigh
REAL*4
On entry, the upper frequency of the filter, given as a fraction of the Nyquist
sampling frequency 1=(2�t); 0:0 � fhigh � 1:0.
On exit, fhigh is unchanged.

wiggles
REAL*4
On entry, a number in -dB units which is proportional to the oscillation from the
Gibbs phenomenon; 0:0 � wiggles � 500:0.
On exit, wiggles is unchanged.

nterms
INTEGER*4
On entry, the order of the filter, that is, the number of filter coefficients in the
filter equation; 2 � nterms � 500 and n � 2(nterms) + 1.
On exit, nterms is unchanged.
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status
INTEGER*4
On entry, an optional variable with an unspecified value.
On exit, status is overwritten. When the subroutine is called, status is defined
and its integer value describes the status of the operation. The following table
shows the status function names, their associated integer values, and the status
description associated with each integer:

Status Function
Value
Returned Description

DXML_SUCCESS( ) 0 Successful execution
DXML_MAND_ARG( ) 1 Mandatory argument is missing
DXML_ILL_WIGGLES( ) 5 wiggles is out of range
DXML_ILL_FLOW( ) 6 flow is equal to fhigh
DXML_ILL_F_RANGE( ) 7 flow or fhigh is out of range
DXML_ILL_N_RANGE( ) 8 n is out of range
DXML_ILL_N_NONREC( ) 9 n is less than (2*nterms+1)
DXML_ILL_NTERMS( ) 10 nterms is out of range

Description

The SFILTER_NONREC subroutine performs nonrecursive filtering in either
lowpass, highpass, bandpass, or bandstop (notch) mode. See Table 11–16 for
information on controlling the filter type with the flow and fhigh arguments.

Example

INCLUDE ’/usr/include/DXMLDEF.FOR’
INTEGER*4 N, NTERMS, STATUS
REAL*4 SA(510), SB(510), FLOW, FHIGH, WIGGLES
FLOW = 0.0
FHIGH = 0.75
WIGGLES = 200.0
N = 200
NTERMS = 20
CALL SFILTER_NONREC(SA, SB, N, FLOW, FHIGH, WIGGLES, NTERMS, STATUS)

This Fortran code filters the 200 values in array SA in lowpass mode.
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SFILTER_INIT_NONREC
Initialization Step for Nonrecursive Filter

The SFILTER_INIT_NONREC subroutine computes a working array that is used
by DXML_FILTER_APPLY_NONREC.

Format

SFILTER_INIT_NONREC (n, flow, fhigh, wiggles, nterms, temp_array, [status])

Arguments

n
INTEGER*4
On entry, the number of values to be filtered; n > 2 and n � 2(nterms) + 1.
On exit, n is unchanged.

flow
REAL*4

On entry, the lower frequency of the filter, given as a fraction of the Nyquist
sampling frequency 1=(2�t); 0:0 � flow � 1:0.
On exit, flow is unchanged.

fhigh
REAL*4
On entry, the upper frequency of the filter, given as a fraction of the Nyquist
sampling frequency 1=(2�t); 0:0 � fhigh � 1:0.
On exit, fhigh is unchanged.

wiggles
REAL*4
On entry, a number in -dB units that is proportional to the oscillation from the
Gibbs phenomenon; 0:0 � wiggles � 500:0.
On exit, wiggles is unchanged.

nterms
INTEGER*4
On entry, the order of the filter, that is, the number of filter coefficients in the
filter equation; 2 � nterms � 500 and n � 2(nterms) + 1.
On exit, nterms is unchanged.

temp_array
REAL*4
On entry, a temporary array of length 510 used for temporary storage.
On exit, temp_array is overwritten and contains the internally-generated filter
coefficients.

status
INTEGER*4
On entry, an optional variable with an unspecified value.
On exit, status is overwritten. When the subroutine is called, status is defined
and its integer value describes the status of the operation. The following table
shows the status function names, their associated integer values, and the status
description associated with each integer:
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Status Function
Value
Returned Description

DXML_SUCCESS( ) 0 Successful execution
DXML_MAND_ARG( ) 1 Mandatory argument is missing
DXML_ILL_WIGGLES( ) 5 wiggles is out of range
DXML_ILL_FLOW( ) 6 flow is equal to fhigh
DXML_ILL_F_RANGE( ) 7 flow or fhigh is out of range
DXML_ILL_N_RANGE( ) 8 n is out of range
DXML_ILL_N_NONREC( ) 9 n is less than (2*nterms+1)
DXML_ILL_NTERMS( ) 10 nterms is out of range

Description

The SFILTER_INIT_NONREC subroutine computes a working array that is used
by the SFILTER_APPLY_NONREC subroutine. See Table 11–16 for information
on controlling the filter type with the flow and fhigh arguments.
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SFILTER_APPLY_NONREC

SFILTER_APPLY_NONREC
Application Step for Nonrecursive Filter

The SFILTER_APPLY_NONREC subroutine performs filtering in lowpass,
highpass, bandpass, or bandstop (notch) mode by using the working array that
was computed by SFILTER_INIT_NONREC.

Format

SFILTER_APPLY_NONREC (in, out, temp_array, [status])

Arguments

in
REAL*4
On entry, an array IN containing the data to be filtered.
On exit, in is unchanged.

out
REAL*4
On entry, a one-dimensional array OUT to contain the filtered data. The IN and
OUT arrays can be the same array.
On exit, out is overwritten and contains the filtered data.

temp_array
REAL*4
On entry, the temporary array of length 510 used for temporary storage of the
filter coefficients generated by the DXML_FILTER_INIT_NONREC subroutine.
On exit, temp_array is unchanged.

status
INTEGER*4
On entry, an optional variable with an unspecified value.
On exit, status is overwritten. When the subroutine is called, status is defined
and its integer value describes the status of the operation. The following table
shows the status function names, their associated integer values, and the status
description associated with each integer:

Status Function
Value
Returned Description

DXML_SUCCESS( ) 0 Successful execution
DXML_MAND_ARG( ) 1 Mandatory argument is missing
DXML_ILL_TEMP_ARRAY( ) 2 temp_array is corrupted or

incorrect

Description

The SFILTER_APPLY_NONREC subroutine uses the working array that was
computed by SFILTER_INIT_NONREC for repeated filtering operations.
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12
Using the Iterative Solvers for Sparse Linear

Systems

DXML provides subprograms for the iterative solution of sparse linear systems of
equations via preconditioned conjugate-gradient-like methods.

This chapter provides information on the following topics:

• Introduction to iterative solvers (Section 12.1)

• Interface to the iterative solver, including the concepts of matrix-free
formulation of an iterative method and preconditioning (Section 12.2)

• Storage schemes for sparse matrices (Section 12.3.1)

• Types of preconditioners (Section 12.3.2)

• Iterative methods (Section 12.4)

• Naming conventions (Section 12.5)

• Iterative solver subroutine summary (Section 12.6)

• Error handling (Section 12.7)

• Hints on using the iterative solvers (Section 12.8)

• Examples of the use of iterative solvers (Section 12.9)

The reference descriptions of the subprograms for the iterative solvers are at the
end of this chapter.

Many iterative solver subprograms have been parallelized for improved
peformance on multiprocessor systems. For a list of these subprograms, parallel
performance considerations, and information about using the parallel library, see
Chapter 4.

12.1 Introduction
Many applications in science and engineering require the solution of linear
systems of equations:

Ax = b (12–1)

where A is an n by n matrix and x and b are n vectors. Often, these systems occur
in the innermost loop of the application, and for good overall performance of the
application, it is essential that the linear system solver be efficient. Depending
on the application, the system may be solved either once, or many times with
different right-hand sides.
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The linear systems of equations that arise from science and engineering
applications are usually sparse, that is, the coefficient matrix A has a large
number of zero elements. Substantial savings in compute time and memory
requirements can be realized by storing and operating on only the nonzero
elements of A. Solution techniques that exploit this sparsity of the matrix A are
referred to as sparse solvers.

12.1.1 Methods for Solutions
Methods for the solution of linear systems of equations can be broadly classified
into two categories:

• Direct Methods
These methods first factor the coefficient matrix A into its triangular factors
and then perform a forward and backward solve with the triangular factors
to get the required solution. The solution is obtained in a finite number of
operations, usually known apriori, and is guaranteed to be as accurate as the
problem definition.

See Chapter 13 for details about direct methods.

• Iterative Methods
These methods start with an initial guess to the solution, and proceed
to calculate solution vectors that approach the exact solution with each
iteration. The process is stopped when a given convergence criterion is
satisfied. The number of iteration steps required for convergence varies with
the coefficient matrix, the initial guess and the convergence criterion—thus
an apriori estimate of the number of operations is not possible.

The convergence of iterative techniques is often accelerated by means of a
preconditioner. Instead of solving (12–1), the iterative technique is applied
to a system derived from the original system (12–1), with better convergence
properties. As a result of preconditioning, the number of operations per
iteration is increased, but the corresponding reduction in the number of
iterations required for convergence usually leads to an overall reduction in
the total time required for solution.

Currently, DXML provides iterative methods only for real double-precision data.

While direct methods for the solution of sparse linear systems are relatively well
understood and their algorithms are for general purpose, iterative methods are
not so well established and their algorithms tend to be more special purpose.
It is well known that there is no general effective iterative algorithm for the
solution of an arbitrary sparse linear system, only collections of algorithms
each suitable for a particular class of problem. Additionally, there are no strict
convergence theorems for some of the iterative methods, and choosing a good
iterative technique and preconditioner, both in terms of its convergence properties
and its performance on a given architecture, is more of an art than a science.
This choice depends on various factors such as the problem being solved, the
data structures used, the architecture of the machine, and the amount of memory
available.

Despite these drawbacks, for certain classes of problems, an appropriate iterative
technique can yield an approximation to the solution significantly faster than a
direct method. Also, iterative methods typically require less memory than direct
methods and hence can be the only means of solution for some large problems. In
an attempt to compensate for the lack of robustness of any single iterative method
and preconditioner, DXML provides a variety of methods and preconditioners.
All these methods belong to the class of preconditioned conjugate-gradient-type
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methods. A good introduction to these iterative methods and preconditioners is
given in the bibliography in Appendix A.

12.2 Interface to the Iterative Solver
The interface to the iterative solver requires as input, the matrix A, the right
hand side b and an initial guess to the solution. However, due to the large
number of storage schemes in use for the storage of sparse matrices, it is not
possible to provide an interface that allows all possible storage schemes. DXML
resolves this issue by using the matrix-free formulation of the iterative method,
as suggested in the proposed iterative standard [Ashby and Seager 1990].

All the iterative techniques provided in DXML refer to the coefficient matrix A,
or matrices derived from it such as the preconditioner, only in the following three
operations:

• Creation of the preconditioner

• Multiplication of the coefficient matrix by a vector

• Application of the preconditioner

The preconditioner is created from the coefficient matrix prior to a call to the
iterative solver routine.

The matrix-free formulation of an iterative method separates the operations of
matrix-vector product and the application of the preconditioner from the rest of
the iterative solver by considering them as subroutines that are called by the
iterative algorithm. These subroutines have a standard interface independent of
the storage scheme used for the coefficient matrix. By writing the subroutines
to provide the required functionality for the storage scheme under consideration,
the same iterative solver can be used for matrices stored using different storage
schemes.

While the matrix-free formulation has the advantage of making the iterative
solver independent of the matrix storage format and the problem being solved,
it has the disadvantage that you have to write the subroutines that perform the
operations on the matrix and the preconditioner. To alleviate this disadvantage
somewhat, DXML provides subroutines for the matrix-vector product, the creation
of the preconditioners and the application of the preconditioners for a select set
of storage schemes and preconditioners. Additionally, driver routine DITSOL_
DRIVER is provided that simplifies these tasks.

Thus, you have the option of either storing the coefficient matrix in one of the
storage schemes provided by DXML and using the subroutines provided, or using
your own storage scheme for the matrix and writing the routines for the matrix
operations. You also have the option of not storing either the coefficient matrix
or the preconditioner, but instead providing the required functionality by some
indirect means.

The examples in Section 12.9 illustrate the various ways in which the iterative
solvers can be used. These examples, along with the hints in Section 12.8 on the
use of the iterative solvers, explain the variety of options provided by DXML.
If you are unfamiliar either with the issues involved in iterative methods or
with the concept of matrix-free formulation of an iterative method, then the
information in these sections should prove helpful.
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The next sections further explain the implications of the use of a matrix-free
formulation of an iterative method and describe the interface for the iterative
solver and the routines that provide the matrix operations. To keep the discussion
general, the iterative solver routine is referred to as SOLVER — this is a generic
name and in practice you would call the iterative solver routine by a name
reflective of the iterative method.

12.2.1 Matrix-Vector Product
The iterative solvers provided in DXML require the evaluation of matrix-vector
products of the form:

v = A � u
or:

v = AT � u
where u and v are vectors of length n. This functionality is provided to the
routine SOLVER via the subroutine MATVEC, which has the following standard
parameter list:
MATVEC (JOB, IPARAM, RPARAM, A, IA, W, U, V, N)

Table 12–1 describes each parameter and its data type.

Table 12–1 Parameters for the MATVEC Subroutine

Argument
Data Type Description

job
integer*4

On entry, defines the operation to be performed:

job = 0 : v = A � u
job = 1 : v = A

T � u
job = 2 : v = w � A � u
job = 3 : v = w � A

T � u

On exit, job is unchanged.

iparam
integer*4

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER. See Table 12–4 for details.
On exit, the first 50 elements of IPARAM are unchanged.

rparam
real*8

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER. See Table 12–5 for details.
On exit, the first 50 elements of RPARAM are unchanged.

a
real*8

On entry, a one-dimensional array for the nonzero elements of the matrix
A. If MATVEC does not require this matrix to be explicitly stored, a is a
dummy argument. Array A can be used to provide workspace.
On exit, any information related to matrix A is unchanged.

ia
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix A or the array A. If this information is not needed, ia is a dummy
argument. Array IA can be used to provide workspace.
On exit, ia is unchanged.

w
real*8

On entry, a one-dimensional array of length at least n that contains the
vector w when job = 2 or 3. The elements of array W are accessed with
unit increment.
On exit, w is unchanged.

(continued on next page)
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Table 12–1 (Cont.) Parameters for the MATVEC Subroutine

Argument
Data Type Description

u
real*8

On entry, a one-dimensional array of length at least n that contains the
vector u. The elements of array U are accessed with unit increment.
On exit, u must be unchanged.

v
real*8

On entry, a one dimensional array of length at least n.
On exit, array V contains the vector defined by job. The elements of array
V are accessed with unit increment.

n
integer*4

On entry, the order of the matrix A.
On exit, n is unchanged.

The routine MATVEC is an input parameter to the routine SOLVER and should
be declared external in your calling program. It could either provide the required
functionality itself, or act as an interface to a routine that provides the required
functionality. Suppose the iterative solver requires MATVEC to provide the
functionality for job = 0. Then you would write the routine MATVEC as follows:

SUBROUTINE MATVEC(JOB,IPARAM,RPARAM,A,IA,W,U,V,N)
.
.
. (any initializations here)
. if necessary
.
.

IF (JOB.EQ.0) CALL USER_MATVEC(...)
RETURN
END

where USER_MATVEC is your routine for evaluating the vector A � u and
returning the result in vector v. This enables you to have a routine USER_
MATVEC, which has a parameter list different from the parameter list of
MATVEC. It also allows you to call one of the matrix-vector product routines
included in DXML instead of USER_MATVEC, provided you have stored the
coefficient matrix using one of DXML’s sparse matrix storage schemes. In either
case, you have to provide the routine MATVEC, with the required standard
parameter list. If you use a storage scheme for the coefficient matrix different
from those provided by DXML, or choose not to store the matrix at all, then it is
your responsibility to provide the functionality required by MATVEC. If, however,
you use a storage scheme provided by DXML for the coefficient matrix, then you
provide a routine MATVEC that essentially calls the appropriate DXML routine.

The examples in Section 12.9 illustrate the different ways in which the
interface provided by the routine MATVEC can be used to provide the required
functionality. The reference descriptions at the end of this chapter describe the
matrix-vector product routines for the various storage schemes supported by
DXML.

12.2.2 Preconditioning
Preconditioning is a technique used for improving the convergence of an iterative
method by applying the method to a system derived from the original with better
convergence properties. The convergence of the iterative methods provided in
DXML depends on the condition number and the distribution of the eigenvalues
of the coefficient matrix A. A distribution where the eigenvalues are clustered is
favorable for fast convergence of the iterative method.
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A preconditioned iterative method applies the iterative method to an equivalent
system derived from (12–2) as follows:

Q�1
L � A �Q�1

R �QR � x = Q�1
L � b

that is:
A0 � x0 = b0 (12–2)

where:
A0 = Q�1

L � A �Q�1
R

x0 = QR � x
and:

b0 = Q�1
L � b

QL and QR are n by n matrices. The matrix Q = QL � QR is called the
preconditioning matrix or the preconditioner. The matrices QL and QR are
derived from the coefficient matrix A such that the matrix A0 is close to the
identity matrix and thus has eigenvalues clustered around unity. As a result
of preconditioning, the iterative method applied to (12–2), with the coefficient
matrix A0, right hand side b0 and solution x0, usually converges faster than when
it is applied to (12–1).

The implementation of the iterative method for solving (12–2) does not involve the
explicit formation of A0. Instead, the matrices QL, QR and A appear in operations
of the form:

v = Q�1
R � u

v = A � u
and:

v = Q�1
L � u

The computation per iteration, in the preconditioned case, is more expensive than
in the unpreconditioned case. This increase in the computation per iteration is
usually offset by a reduction in the number of iterations required for convergence,
leading to a reduction in the total computation.

The matrices QL and QR form a good preconditioner if they satisfy the following
properties:

• Q is a good approximation to A so that A0 is close to the identity matrix.

• QR and QL are easily obtainable.

• Solving systems of the form QL � u = v or QR � u = v is easy as the
preconditioner is applied via the solution of these systems.

• The storage costs of QL and QR are not excessive.

Preconditioners can be divided into three broad classes depending on the manner
in which they are applied:

• Left preconditioning:
(Q�1

L � A) � x = (Q�1
L � b)

• Right preconditioning:
(A �Q�1

R ) � (QR � x) = b
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• Split preconditioning:

(Q�1
L �A �Q�1

R ) � (QR � x) = (Q�1
L � b)

Left and right preconditioning can be considered as special cases of split
preconditioning with QR and QL being the identity matrices, respectively.

In the case of left preconditioning, the residual of the system (12–2), evaluated by
the iterative method is not the same as the residual of the original system (12–1).
The unpreconditioned residual, r, and the preconditioned residual, r0, are related
as follows:

r0 = Q�1
L � (b� A � x) = Q�1

L � r
Similarly, the solution x0 evaluated using right preconditioning is related to the
true solution, x, as follows:

x0 = QR � x
It follows that in the case of split preconditioning, neither the true solution nor
the true residual are obtained directly from the application of the iterative
technique to (12–2). Thus, the use of preconditioning implies that extra
computation has to be done to recover the true residual and solution from
the residual and solution of the equivalent system (12–2). However, there is a
special case of split preconditioning that allows the iterative method to obtain the
true residual and the true solution directly, when applied to a symmetric positive
definite (SPD) matrix A. This is the case where the preconditioner is symmetric
positive definite as well and hence can be written as:

Q = B �BT

for some matrix B, that is:
QL = QT

R = B:

The interface to the preconditioning operations is provided by the routines
PCONDL and PCONDR for left and right preconditioning, respectively. The two
routines have similar parameter lists, differing only in the matrices QL and QR:

SUBROUTINE PCONDR (JOB, IPARAM, RPARAM, QR, IQR, A, IA, W, U, V, N)

SUBROUTINE PCONDL (JOB, IPARAM, RPARAM, QL, IQL, A, IA, W, U, V, N)

Table 12–2 describes each parameter and its data type.

Table 12–2 Parameters for the PCONDR and PCONDL Subroutines

Argument
Data Type Description

job
integer*4

On entry, defines the operation to be performed:

job = 0 : v = Q
�1
R � u

job = 1 : v = Q
�T
R � u

job = 2 : v = w � Q
�1
R � u

job = 3 : v = w � Q
�T
R � u

On exit, job is unchanged.

(continued on next page)
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Table 12–2 (Cont.) Parameters for the PCONDR and PCONDL Subroutines

Argument
Data Type Description

iparam
integer*4

On entry, a one-dimensional integer array of length at least 50, containing
the parameters passed to the routine SOLVER. See Table 12–4 for details.
On exit, the first 50 elements of IPARAM are unchanged.

rparam
real*8

On entry, a one-dimensional real array of length at least 50, containing
the parameters passed to the routine SOLVER. See Table 12–5 for details.
On exit, the first 50 elements of RPARAM are unchanged.

qr
real*8

On entry, a one-dimensional array for the nonzero elements of the matrix
QR . If PCONDR does not require this matrix to be explicitly stored, qr
is a dummy argument. qr can also be used to provide workspace for the
routine PCONDR.
On exit, any information related to the matrix QR is unchanged.

iqr
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix QR or the array QR. If no information is required, iqr is a dummy
argument. iqr can also be used to provide workspace.
On exit, information related to the matrix QR or the array QR is
unchanged.

a
real*8

On entry, a one-dimensional array for the nonzero elements of the matrix
A. If PCONDR does not require the matrix A to be explicitly stored, a is a
dummy argument. Array A can also be used to provide workspace.
On exit, any information related to the matrix A is unchanged.

ia
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix A or the array A. If no information is needed, ia is a dummy
argument. Array IA can also be used to provide workspace.
On exit, any information related to the matrix A or the array A is
unchanged.

w
real*8

On entry, a one-dimensional array of length at least n that contains the
vector w when job = 2 or 3. The elements of array W are accessed with
unit increment.
On exit, w is unchanged.

u
real*8

On entry, a one-dimensional array of length at least n that contains the
vector u. The elements of array U are accessed with unit increment.
On exit, u must be unchanged.

v
real*8

On entry, a one-dimensional array of length at least n.
On exit, array V contains the vector defined by job. The elements of array
V are accessed with unit increment.

n
integer*4

On entry, the order of the matrix A.
On exit, n is unchanged.

PCONDL and PCONDR are input parameters to SOLVER and, if used, must be
declared external in your program. If only one of these preconditioning options is
used, then the argument for the other is a dummy input parameter to SOLVER. If
no preconditioning is used, both PCONDL and PCONDR are dummy parameters.
The routines PCONDL and PCONDR are called by the iterative solver only if
you request their use by setting an appropriate parameter for preconditioning, as
explained in Section 12.2.4. This implies that you do not have to provide dummy
routines for either PCONDL or PCONDR if they are not being used by SOLVER.

The preconditioning routines, PCONDL and PCONDR, only apply the
preconditioner; you are responsible for setting up the preconditioner before
the call to the routine SOLVER. The pointers to the matrix A, that is, arrays
A and IA are passed to the preconditioner for use by those routines that are
dependent on A, such as polynomial preconditioners. If the preconditioning
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routine does not use A, both A and IA may be dummy arguments. Any workspace
for use by the preconditioner can be passed through the arrays QL, QR, IQL, and
IQR.

In the case of split SPD preconditioning, the iterative technique requires the
solution of a system of the form Q � u = v. An explicit split of the preconditioning
matrix Q into QL and QR is not required. As a result, only one of the routines
PCONDL or PCONDR is needed. DXML provides the required functionality
through the routine PCONDL, that is, PCONDL provides the solution of the
system Q � u = v when the job argument is set to zero and PCONDR is not used.

If the iterative solver is called with preconditioning, then you must provide the
appropriate routines PCONDL and PCONDR with the standard parameter list.
As in the case of MATVEC, the required functionality could be provided either
by your own routines or by calls to the appropriate DXML routines from within
PCONDL and PCONDR. The examples in Section 12.9 illustrate the different
ways in which the interface provided by the routines PCONDL and PCONDR can
be used to provide the required functionality. Section 12.3.2 and the reference
descriptions at the end of this chapter describe the routines for creating and
applying the preconditioners for the various storage schemes supported by
DXML.

12.2.3 Stopping Criterion
An important aspect of any iterative solver is the stopping criterion, that is, the
conditions that determine when the iterations are stopped. The stopping criterion
usually has two parts: a quantity that is measured and a positive constant �
that the quantity is measured against to determine convergence. The choice of
each is crucial as the stopping criterion should accurately reflect when a suitable
approximation to the solution has been obtained.

In order for the evaluation of the stopping criterion to form a small fraction of the
total computation, it should be easy to obtain the quantity that is measured from
the iterative technique. Additionally, the constant � must be chosen appropriately.
A large value might result in a solution that does not have the required accuracy,
while a small value might imply extra computation to achieve unneeded extra
accuracy. Setting epsilon too small might also prevent the stopping criterion from
ever being satisfied.

DXML provides you with the option of either writing your own stopping criterion
or using one of the stopping criteria provided. The latter are based on the
residual, ri, of the system (12–1) at the i-th step of the iteration:

ri = b� A � xi

and the preconditioned residual, r0i, of the system (12–2) at the i-th step of the
iteration:

r0i = Q�1
L � (b� A � xi)

The four stopping criteria provided by DXML are as follows:

• Stopping Criterion 1:
jjrijj2 � � (12–3)

• Stopping Criterion 2:
jjrijj2
jjbjj2

� � (12–4)
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• Stopping Criterion 3:
jjr0ijj2 � � (12–5)

• Stopping Criterion 4:
jjr0ijj2
jjb0jj2

� � (12–6)

where:
r0i = Q�1

L � ri
b0 = Q�1

L � b
and:

jjrijj2 =

vuut nX
j=1

r2
i (j)

You can choose one of these stopping criteria by setting the value of an
appropriate input parameter as explained in Section 12.2.3. In the case of
an unpreconditioned iterative technique, the choice of stopping criterion (12–5)
or (12–6) defaults to (12–3) or (12–4), respectively. Stopping criteria (12–4) and
(12–6) require that the denominator should be nonzero to avoid a division by
zero error. Some stopping criteria might require more computation than others
depending on what can be easily obtained from the iterative technique. For
example, the left hand side of (12–3) is calculated during the unpreconditioned
conjugate gradient technique and hence very little extra computation is needed
for the evaluation of (12–3) or (12–4).

DXML also provides you with the option of implementing your own stopping
criterion via the routine MSTOP, which has the following standard parameter
list:

SUBROUTINE MSTOP (IPARAM, RPARAM, X, R, Z, B, N)

Table 12–3 describes each parameter and its data type.

Table 12–3 Parameters for the MSTOP Subroutine

Argument
Data Type Description

iparam
integer*4

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER. See Table 12–4 for details.
On exit, the first 50 elements of IPARAM are unchanged.

rparam
real*8

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER. See Table 12–5 for details.
On exit, the first 50 elements of RPARAM are unchanged, with the
exception of RPARAM(2) that contains the left side of the stopping
criterion as evaluated by MSTOP.

x
real*8

On entry, a one-dimensional array of length at least n that contains the
approximation to the solution obtained at the iteration number, iters in
IPARAM(10).
On exit, x is unchanged.

(continued on next page)
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Table 12–3 (Cont.) Parameters for the MSTOP Subroutine

Argument
Data Type Description

r
real*8

On entry, a one-dimensional array of length at least n that contains the
true residual of the system (12–1) obtained at the iteration number, iters
in IPARAM(10). See the reference descriptions of the iterative solvers for
conditions under which r is defined.
On exit, r must be unchanged.

z
real*8

On entry, a one-dimensional array of length at least n that contains the
preconditioned residual of the system (12–2) obtained at the iteration
number, iters in IPARAM(10). See the reference descriptions of the
iterative solvers for conditions under which z is defined.
On exit, z is unchanged.

b
real*8

On entry, a one-dimensional real array of length at least n that contains
the right-hand side of the system (12–1).
On exit, b must be unchanged.

n
integer*4

On entry, the order of the matrix A.
On exit, n is unchanged.

By providing an interface to the routine MSTOP, DXML allows you to use a
stopping criterion derived from the vectors x, r, z and b, which is different
from the standard stopping criteria provided by DXML. Based on the input
parameters, the routine MSTOP should evaluate the left side of the convergence
test and return the value in RPARAM(2) as explained in Section 12.2.4. The
iteration count parameter, iters (IPARAM(10)), allows you to evaluate quantities
depending upon the iteration, such as the initial residual norm, or print out
information on each iteration. MSTOP is an input parameter to the routine
SOLVER and, if used, should be declared external in your calling program.

12.2.4 Parameters for the Iterative Solver
The interface to the iterative solver provided by DXML allows you to pass
information to the solver such as the maximum number of iterations allowed
and the I/O unit number for output, as well as to obtain information back from
the solver such as the number of iterations required for convergence and error
messages. This information is passed via two arrays — IPARAM for integer
parameters and RPARAM for real parameters. These arrays are of length at
least 50, with the first 30 elements reserved for use by the proposed standard
and next 20 for use by DXML. Tables 12–4 and 12–5 describe the elements of the
parameter arrays.

Table 12–4 Integer Parameters for the Iterative Solver

Parameter Variable Description

IPARAM(1) nipar Length of the array IPARAM, � 50.

IPARAM(2) nrpar Length of the array RPARAM, � 50.

IPARAM(3) niwk Length of the array IWORK, size varies with iterative solvers.

IPARAM(4) nrwk Length of the array RWORK, size varies with iterative solvers.

(continued on next page)
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Table 12–4 (Cont.) Integer Parameters for the Iterative Solver

Parameter Variable Description

IPARAM(5) iounit I/O unit for providing information generated by SOLVER. If
iounit > 0, output is written to UNIT = iounit, which must
be opened in the calling program. If iounit < 0, no output is
generated by the routine SOLVER.

IPARAM(6) iolevel Determines the kind of information output when iounit > 0:

iolevel = 0 : Fatal error messages only
iolevel = 1 : Warning messages and minimum output
iolevel = 2 : Reasonable summary
iolevel�3 : More detailed information

IPARAM(7) ipcond Determines the form of preconditioning:

ipcond = 0 : no preconditioning; IQR, IQL, QR, QL,
PCONDL, PCONDR are dummy arguments
ipcond = 1 : left preconditioning; IQR, QR, PCONDR are
dummy arguments
ipcond = 2 : right preconditioning; IQL, QL, PCONDL are
dummy arguments
ipcond = 3 : split preconditioning
ipcond = 4 : SPD split preconditioning; IQR, QR, PCONDR
are dummy arguments

IPARAM(8) istop Determines the stopping criterion:

istop = 0 : user-supplied routine MSTOP
istop = 1 : stopping criterion (12–3) (default)
istop = 2 : stopping criterion (12–4)
istop = 3 : stopping criterion (12–5); if no preconditioning
used, defaults to istop = 1
istop = 4 : stopping criterion (12–6); if no preconditioning
used, defaults to istop = 2

IPARAM(9) itmax Maximum number of iterations allowed for convergence. If
convergence is not achieved in itmax iterations the solver
returns with error flag set. Default = 100

IPARAM(10) iters Number of iterations required to satisfy the convergence
criterion.

IPARAM(31) nz Parameter related to the number of nonzeros stored for the
matrix. See the storage schemes in Section 12.3.1 for more
details.

IPARAM(32) ndim Leading dimension of 2 dimensional arrays. See the storage
schemes in Section 12.3.1 for more details.

IPARAM(33) ndeg Degree of the polynomial used for polynomial preconditioning.
Default = 1

IPARAM(34) kprev Number of previous residual vectors used in the iterative solver
DITSOL_PGMRES. See the reference descriptions for details.

(continued on next page)
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Table 12–4 (Cont.) Integer Parameters for the Iterative Solver

Parameter Variable Description

IPARAM(35) istore Storage scheme used in the driver routine:

istore = 1 : SDIA storage scheme, lower triangular part is
stored (Section 12.3.1.1)
istore = 2 : SDIA storage scheme, upper triangular part is
stored (Section 12.3.1.1)
istore = 3 : UDIA storage scheme (Section 12.3.1.2)
istore = 4 : GENR storage scheme (Section 12.3.1.3)

IPARAM(36) iprec Preconditioner used in the driver routine:

iprec = 1 : diagonal preconditioner (Section 12.3.2.1)
iprec = 2 : polynomial preconditioner (Section 12.3.2.2)
iprec = 3 : ILU preconditioner (Section 12.3.2.3)

IPARAM(37) isolve Iterative solver used in the driver routine:

isolve = 1 : Conjugate gradient method
isolve = 2 : Least squares conjugate gradient method
isolve = 3 : Bi-conjugate gradient method
isolve = 4 : Conjugate gradient squared method
isolve = 5 : Generalized minimum residual method
isolve = 6 : Transpose-free quasiminimal residual method

Table 12–5 Real Parameters for the Iterative Solver

Parameter Variable Description

RPARAM(1) errtol(�) User-supplied tolerance for convergence.

RPARAM(2) stptst Quantity that determines the convergence of the iterative
technique. (lefthand side of stopping criterion)

The elements of the arrays IPARAM and RPARAM not defined in Table 12–4 and
Table 12–5 have no variable assigned to them at present, but are reserved for
future use by DXML. The arrays IPARAM and RPARAM are passed to the routine
SOLVER and all the routines called by it (MATVEC, PCONDL, PCONDR and
MSTOP). If necessary, you can use these arrays to pass additional information to
these routines. For example, if you declare these arrays to be of dimension 100,
then the elements from 51 to 100 can be used to pass information to the routines
MATVEC, PCONDL, PCONDR and MSTOP. However, the first 50 elements are
for the exclusive use of the proposed standard and DXML.

DXML allows you to set the variables in the IPARAM and RPARAM arrays
to their default values by a call to the routines DITSOL_DEFAULTS with the
following interface:

SUBROUTINE DITSOL_DEFAULTS (IPARAM, RPARAM)

Table 12–6 defines the default values set by the routine DITSOL_DEFAULTS.
After a call to DITSOL_DEFAULTS, you can change any of the parameters as
required. It is your responsibility to ensure that the variables in the arrays
IPARAM and RPARAM have been assigned appropriate values before a call to
the iterative solver routine. The examples in Section 12.9 illustrate the use of the
routine DITSOL_DEFAULTS further.
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Table 12–6 Default Values for Parameters

Parameter Variable Default Value

iparam(1) nipar 50

iparam(2) nrpar 50

iparam(5) iounit 6

iparam(6) iolevel 0

iparam(7) ipcond 0

iparam(8) istop 1

iparam(9) itmax 100

iparam(33) ndeg 1

rparam(1) errtol 1.0e-6

12.2.5 Argument List for the Iterative Solver
The matrix-free formulation of the iterative method adopted by DXML implies
that the routine SOLVER has, as input parameters, the routines MATVEC,
PCONDL, PCONDR, and MSTOP. Additionally, the parameter list also contains
the arrays A, IA, QL, IQL, QR, and IQR for use by the routines for the matrix
operations (MATVEC, PCONDL, PCONDR) as well as input parameters such
as the size of the system, the right side, and the initial approximation. The
approximation to the solution obtained by the solver is returned in the vector
x. Real and integer workspace is provided via arrays RWORK and IWORK,
respectively and real and integer parameters via arrays RPARAM and IPARAM,
respectively. This results in the following interface for the routine SOLVER:

SUBROUTINE SOLVER (MATVEC, PCONDL, PCONDR, MSTOP, A, IA, X, B, N, QL, IQL,
QR, IQR, IPARAM, RPARAM, IWORK, RWORK, IERROR)

Table 12–7 describes each parameter and its data type.

Table 12–7 Parameters for the SOLVER Subroutine

Argument
Data Type Description

matvec
character

On entry, a user-supplied name for the routine that evaluates the matrix-
vector product. matvec uses the standard interface and must be declared
external in your calling program. See Table 12–1.
On exit, matvec is unchanged.

pcondl
character

On entry, a user-supplied name for the routine that applies left
preconditioning. pcondl uses the standard interface. See Table 12–2.
If left preconditioning is not used, pcondl is a dummy parameter. If used,
pcondl must be declared external in your calling program. The variable
ipcond in IPARAM(7), must be set appropriately for access to the PCONDL
routine.
On exit, pcondl is unchanged.

(continued on next page)

12–14 Using the Iterative Solvers for Sparse Linear Systems



Table 12–7 (Cont.) Parameters for the SOLVER Subroutine

Argument
Data Type Description

pcondr
character

On entry, a user-supplied name for the routine that applies right
preconditioning. pcondr uses the standard interface. See Table 12–2.
If right preconditioning is not used, pcondr is a dummy parameter. If
used, pcondr must be declared external in your calling program. The
variable ipcond, IPARAM(7), must be set appropriately for access to the
PCONDR routine.
On exit, pcondr is unchanged.

mstop
character

On entry, a user-supplied name for the routine that evaluates a stopping
criterion defined by you. mstop has the standard interface. See
Table 12–3. If used, it must be declared external in your calling program.
The variable istop, IPARAM(8), must be set appropriately for access to the
MSTOP routine. If not used, that is, you use one of the DXML stopping
criteria, mstop is a dummy parameter.
On exit, mstop is unchanged.

a
real*8

On entry, a one-dimensional array for the nonzero elements of matrixA. If
the MATVEC, PCONDL and PCONDR routines do not require this matrix
to be explicitly stored, array A may be a dummy array. Array A may also
be used to provide workspace.
On exit, any information related to the matrix A is unchanged.

ia
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix A, or the array A. If the information is not needed, array IA may
be a dummy array. Array IA may also be used to provide workspace.
On exit, any information related to the matrix A or the array A is
unchanged.

x
real*8

On entry, a one-dimensional array of length at least n that contains the
initial approximation to the solution. The elements of array X are accessed
with unit increment.
On exit, x is the approximation to the solution obtained by the routine
SOLVER.

b
real*8

On entry, a one-dimensional array of length at least n that contains the
right side of the system (12–1). The elements of array B are accessed with
unit increment.
On exit, b is unchanged.

n
integer*4

On entry, the order of the matrix A.
On exit, n is unchanged.

ql
real*8

On entry, a one-dimensional array for the nonzero elements of the matrix
QL. If PCONDL does not require this matrix to be explicitly stored, ql is a
dummy array. Array QL may also be used to provide workspace.
On exit, any information related to the matrix QL is unchanged.

iql
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix QL or the array QL. If no information is needed, IQL is a dummy
array. Array IQL can also be used to provide workspace.
On exit, any information related to the matrix QL or the array QL is
unchanged.

qr
real*8

On entry, a one-dimensional array for the nonzero elements of the matrix
QR . If PCONDR does not require this matrix to be explicitly stored, QR is
a dummy array. QR can also be used to provide workspace.
On exit, any information related to matrix QR is unchanged.

(continued on next page)
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Table 12–7 (Cont.) Parameters for the SOLVER Subroutine

Argument
Data Type Description

iqr
integer*4

On entry, a one-dimensional array for auxiliary information about the
matrix QR or the array QR. If no information is needed, IQR is a dummy
array. Array IQR can also be used to provide workspace.
On exit, any information related to the matrix QR or the array QR is
unchanged.

iparam
integer*4

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER.
On exit, the first 50 elements of IPARAM are unchanged, with the
exception of iters (IPARAM(10)), which is then equal to the number of
iterations required for convergence.

rparam
real*8

On entry, a one-dimensional array of length at least 50, containing the
parameters passed to the routine SOLVER.
On exit, the first 50 elements of rparam are unchanged, with the exception
of RPARAM(2) that is equal to the left side of the stopping criterion.

iwork
integer*4

On entry, a one-dimensional array of length niwk, IPARAM(3), used as an
integer workspace.
On exit, the data in IWORK is overwritten.

rwork
real*8

On entry, a one-dimensional array of length nrwk, IPARAM(4), used as a
real workspace.
On exit, the data in RWORK is overwritten.

ierror
integer*4

On entry, a scalar value that receives the value of the error flag.
On exit, the error flag returned by the routine SOLVER.

In addition to the error messages output by the iterative solver, based on the
variable, iolevel (IPARAM(6)), the routine SOLVER also returns an error flag,
ierror. It is your responsibility to check the error flag on exit from SOLVER
and ensure that the solution procedure ended normally. This is especially true
if you have disabled all error messages by setting a negative value for iounit
(IPARAM(5)).

12.3 Matrix Operations
The matrix-free formulation of the iterative method adopted by DXML isolates
the operations involving the coefficient matrix, A, and the preconditioning
matrices, QL and QR, by separating them into subroutines that form the matrix-
vector product, create the preconditioner and apply the preconditioner. This
formulation allows you to use any storage scheme for storing the coefficient
matrix and the preconditioner, but has the drawback that the routines MATVEC,
PCONDL, PCONDR, and the routine for the creation of the preconditioner have
to be written by you.

As an alternative, DXML provides you with the option of using routines written
to implement the matrix operations for three matrix storage schemes. In addition
to the matrix-vector product operations, DXML provides routines for the creation
and application of three preconditioners for each of the three storage schemes.
Calls to these DXML routines can be used in the routines MATVEC, PCONDL,
and PCONDR to implement the desired operation. The only restriction is that
the coefficient matrix be stored in one of the storage schemes provided by DXML.
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12.3.1 Storage Schemes for Sparse Matrices
A sparse matrix is a matrix that has very few nonzero elements. By storing
and operating on only the nonzero elements, it is possible to achieve substantial
savings in memory requirements and computation. In addition to the nonzero
elements, storage is also required for information that determines the position of
each nonzero element in the matrix.

Sparse matrices can be broadly classified as either structured or unstructured
matrices. A structured sparse matrix is one where the distribution of nonzero
elements in the matrix has a specific structure. For example, the matrixA shown
in (12–7) has its nonzero elements along the diagonals of the matrix:

A =

2
666664

a11 a12 0 0 0 0
0 a22 a23 0 0 0
0 0 a33 a34 0 0
a41 0 0 a44 a45 0
0 a52 0 0 a55 a56
0 0 a63 0 0 a66

3
777775 (12–7)

This structure can be exploited to reduce the amount of additional information
that is necessary for the determination of the position of the nonzero elements
within the matrix. For example, consider the elements in the superdiagonal of
the matrix A:

( a12 a23 a34 a45 a56 )

As the elements all lie on a diagonal, the position of each element relative to the
previous element is known (that is, the row and column indices of an element on
the diagonal are one higher than the row and column indices of the preceding
element in the diagonal). If the row and column indices of the first element a12
are known, the positions of the other elements in the diagonal are also known.
Thus, substantial savings in the storage requirements can be achieved by storing
only the position of the first element in each diagonal.

Unstructured sparse matrices, such as the matrix A in (12–8), do not have a
structure to the distribution of the nonzero elements:

A =

2
6664
a11 0 a13 0 0
0 a22 a23 0 0
0 0 a33 0 0
a41 0 0 a44 a45
0 0 a53 0 a55

3
7775 (12–8)

In such cases, each nonzero element is stored along with its row and column
indices. Some savings in storage is possible if the elements in a row (or column)
are stored contiguously. In such cases, only the row (or column) index for the first
nonzero element of the row (or column) is stored.

DXML subprograms that operate on sparse matrices store them in one of three
ways:

• Symmetric diagonal storage

• Unsymmetric diagonal storage

• General storage by rows
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12.3.1.1 SDIA: Symmetric Diagonal Storage Scheme
Symmetric matrices whose nonzero elements lie along a few diagonals can be
stored using a scheme that stores only the diagonals and the distance of each
diagonal from the main diagonal. Each diagonal is stored in its entirety, along
with any zeros. The distance of a diagonal from the main diagonal is positive if
the diagonal is above the main diagonal and negative if the diagonal is below the
main diagonal. The main diagonal itself has a distance of zero.

An n by n matrix is stored in a two dimensional array with at least n rows and as
many columns as the number of nonzero diagonals in the strict upper (or lower)
triangular part plus 1 (for the main diagonal). As the matrix is symmetric, either
the upper or lower triangular part can be stored. Both the elements above the
main diagonal and those below the main diagonal retain the row corresponding to
the row in the original matrix. Thus, the matrix A in (12–9) can be stored in the
upper triangular form as shown in (12–10):

A =

2
666664

a11 0 0 a14 a15 0
0 a22 0 0 a25 a26
0 0 a33 0 0 a36
a14 0 0 a44 0 0
a15 a25 0 0 a55 0
0 a26 a36 0 0 a66

3
777775 (12–9)

AD =

2
666664

a11 a14 a15
a22 a25 a26
a33 a36 �
a44 � �
a55 � �
a66 � �

3
777775 (12–10)

INDEX = (0; 3; 4)

The first element of INDEX corresponds to the main diagonal of A, which is
stored in AD(*,1). The second element of INDEX implies that the superdiagonal
that is 3 away from the main diagonal is stored in AD(*,2) and so on. The positive
elements in INDEX indicate that the upper triangular part is being stored.

The matrix A can also be stored in the lower triangular form as shown in (12–11):

AD =

2
666664

a11 � �
a22 � �
a33 � �
a44 a14 �
a55 a25 a15
a66 a36 a26

3
777775 (12–11)

INDEX = (0;�3;�4)

The asterisk (*) indicates that the element does not belong to the matrix A. These
elements should be set to zero in the array AD. The negative elements in INDEX
indicate that the lower triangular part is being stored.

The array AD is dimensioned as ndim by nz, where nz is the number of diagonals
stored and ndim is the declared leading dimension of AD as given in the calling
program. The INDEX array has dimension nz. Note that nz can be at most n for
an n by n system.
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The characteristics of this storage scheme are as follows:

• The diagonals can be stored in any order.

• Either the upper or the lower triangular part is stored. Thus the elements in
INDEX after the first element, are all positive or all negative.

• Elements which are part of AD, but not part of A, should be set equal to zero.
These are the elements denoted by the asterisk (*).

12.3.1.2 UDIA: Unsymmetric Diagonal Storage Scheme
This storage scheme follows the same principle as the symmetric diagonal storage
scheme, but both the upper and the lower triangular halves of the matrix are
stored. Thus, the matrix A in (12–12) is stored as shown in (12–13):

A =

2
666664

a11 0 0 a14 a15 0
0 a22 0 0 a25 a26
a31 0 a33 0 0 a36
0 a42 0 a44 0 0
a51 0 a53 0 a55 0
0 a62 0 a64 0 a66

3
777775 (12–12)

AD =

2
666664

a11 a14 a15 � �
a22 a25 a26 � �
a33 a36 � a31 �
a44 � � a42 �
a55 � � a53 a51
a66 � � a64 a62

3
777775 (12–13)

INDEX = (0; 3; 4;�2;�4)

The array AD is dimensioned ndim by nz, where nz is the number of diagonals
stored and ndim is the leading dimension of the matrix, as given in the calling
program. The array INDEX has dimension nz. For an n by n system, nz can be
at most 2n� 1.

The characteristics of this storage scheme are as follows:

• The diagonals can be stored in any order.

• Elements which are part of AD, but not part of A, should be set equal to zero.
These are the elements denoted by the asterisk (*).

12.3.1.3 GENR: General Storage Scheme by Rows
This storage scheme can be used for storing general unstructured matrices. Each
nonzero element is stored along with its row and column indices. Thus there is a
single array of matrix elements, AR, along with an array of row indices, IA, and
an array of the corresponding column indices, JA.

As the matrix is stored by rows, the row index for all the nonzero elements in a
row is stored only once. The i-th element of array IA points to the start of the i-th
row in arrays JA and AR. For example if IA(3) = 6, then the third row is stored
starting from the 6-th element in AR and JA. As IA(4) points to the start of the
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fourth row, the number of elements in the third row is given by IA(4)-IA(3). Thus
the matrix A in (12–14) is stored using three vectors as shown in (12–15):

A =

2
666664

a11 0 0 a14 a15 0
0 a22 a23 0 0 a26
a31 0 a33 0 a35 a36
0 a42 0 a44 0 0
a51 0 0 0 a55 0
0 0 a63 a64 0 a66

3
777775 (12–14)

AR = (a11; a14; a15; a22; a23; a26; a31; a33; a35; a36; a42; a44; a51; a55; a63; a64; a66)
(12–15)

JA = (1; 4; 5; 2; 3; 6; 1; 3; 5; 6; 2; 4; 1; 5; 3; 4; 6)

IA = (1; 4; 7; 11; 13; 15; 18)

The dimension of AR and JA is at least nz, where nz is the number of nonzero
elements in the matrix. IA is of length n+ 1 (for an n by n matrix), and the last
element is nz + 1. This helps in determining the end of the last row of the matrix
and the number of nonzero elements in the last row. To store all the indices in
one array, both IA and JA are stored in an array INDEX, with the first n + 1
location used for IA and the rest of the vector used for JA. The length of INDEX
is at least nz + n + 1. Thus, for the previous example, the array INDEX is as
follows:

INDEX = (1; 4; 7; 11; 13; 15; 18; 1; 4; 5; 2; 3; 6; 1; 3; 5; 6; 2; 4; 1; 5; 3; 4; 6)

where the first 7 elements form IA and the rest form JA.

12.3.2 Types of Preconditioners
For each of the three storage schemes for sparse matrices, DXML provides the
routines to create and apply the following three preconditioners:

• Diagonal preconditioner

• Neumann polynomial preconditioner

• Incomplete LU preconditioner

12.3.2.1 DIAG: Diagonal Preconditioner
This is the simplest of the three preconditioners, with the preconditioning matrix
Q chosen as the diagonal of the coefficient matrix A. There is no explicit split of
Q into QL and QR. As the diagonal preconditioner approximates the matrix A
by just its diagonal, it is usually not a good preconditioner for a general system
(12–1).
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12.3.2.2 POLY: Polynomial Preconditioner
The polynomial preconditioner is derived from the matrix A by first splitting it
into its diagonal and off-diagonal parts and then considering the inverse of A as
a truncated version of a polynomial series expansion. Let the coefficient matrix A
be written as:

A = D � C

= (I � C �D�1) �D
= (I �B) �D

where D is the diagonal of A, �C is the matrix of off-diagonal elements, and
B = C � D�1. By a polynomial series expansion, the inverse of A can be written
as:

A�1 = D�1 � (I �B)�1 = D�1 � (I +B + B2 +B3 + :::):

A polynomial preconditioner of degree m essentially considers Q�1 to be a
truncated version of the series expansion, that is:

Q�1 = D�1 � (I +B +B2 +B3 + :::+ Bm):

This polynomial expansion of the inverse of A is called the Neumann polynomial.
The preconditioner is obtained in the form Q�1, not Q, and there is no explicit
split into the matrices QL and QR .

The effectiveness of polynomial preconditioners depends on how closely Q�1

approximates A�1. This is determined by the matrix A itself as well as the
degree of the polynomial. While a higher degree polynomial usually indicates
a better approximation, it also involves extra computation per iteration. For
preconditioning with a higher degree polynomial to be effective, the reduction in
iterations must be sufficient to offset the extra computation per iteration.

12.3.2.3 ILU: Incomplete LU Preconditioner
The incomplete LU preconditioner obtains a factorization of A into lower and
upper triangular factors, the matrices L and U , respectively, such that the
following conditions are satisfied:

• Matrices L and U have the same nonzero structure as the matrix A.

• Nonzero elements of matrix A are equal to the corresponding element of the
product L � U .

Thus A�L � U = Q and Q�1 = U�1 � L�1.

The factorization is referred to as ’incomplete’ as the product L�U has nonzeros in
locations where the matrix A has zeros, that is, the product L � U is not identical
to the matrix A as in the case of a ’complete’ LU factorization.

If A is a symmetric matrix, as in the SDIA storage scheme, an incomplete
Cholesky decomposition is computed with:

U = LT

Incomplete factorizations usually form good preconditioners especially if the extra
nonzero elements in the product L � U are relatively small.
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12.4 Iterative Solvers
DXML provides six iterative solvers based on the conjugate-gradient and
conjugate-gradient-like techniques:

• DITSOL_PCG: Conjugate gradient method

• DITSOL_PLSCG: Least squares conjugate gradient method

• DITSOL_PBCG: Biconjugate gradient method

• DITSOL_PCGS: Conjugate gradient squared method

• DITSOL_PGMRES: Generalized minimum residual method

• DITSOL_PTFQMR: Transpose-free quasiminimal residual method

Each solver is applicable to a class of problems determined by the properties
of the coefficient matrix A in (12–1) or the preconditioned matrix A0 in (12–2)
if preconditioning is used. The reference descriptions of the iterative solver
subprograms at the end of this chapter outline the conditions under which each
method can be applied.

DXML provides you with the option of using each iterative method without
preconditioning as well as with right, left and split preconditioning. Table 12–8
indicates which forms of preconditioning are available for each method.

Table 12–8 Preconditioners for the Iterative Methods

Method None Left Right Split SPD Split

DITSOL_PCG X X

DITSOL_PLSCG X X X X

DITSOL_PBCG X X X X

DITSOL_PCGS X X X X

DITSOL_PGMRES X X X X

DITSOL_PTFQMR X X X X

12.4.1 Driver Routine
DXML includes a driver routine, DITSOL_DRIVER, that incorporates the calls
to the MATVEC, PCONDL, and PCONDR routines so that you do not have to
write these routines. The parameter list of the driver routine is identical to the
parameter list of SOLVER, with the exception of the external routines MATVEC,
PCONDL and PCONDR, which now refer to routines provided by DXML.

By setting values of appropriate parameters in the array IPARAM, you can
choose a solver, a storage scheme and a preconditioner. The preconditioner must
be created prior to the call to the driver routine. The driver routine does not
allow the use of the matrix-free formulation of the iterative solver. The reference
description of the driver routine at the end of this chapter provides further
details.
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12.5 Naming Conventions
The DXML routines can be broadly classified into two: routines related to the
iterative solver and independent of the matrix, and routines that perform the
matrix operations and are thus identified with a storage scheme.

Each routine name starts with the character D to indicate double-precision real
routines. The next character group determines the operation being performed,
namely, iterative solver, matrix-vector product, creation of the preconditioner and
application of the preconditioner. Depending on the operation, the third, fourth
and fifth character groups are chosen to reflect the iterative method, the storage
scheme or the preconditioner.

Table 12–9 shows the naming conventions used for the iterative solver
subroutines. Each routine name is obtained by concatenating the appropriate
options from a character group, each character group separated by an underscore
character.

Table 12–9 Naming Conventions: Iterative Solver Routines

Character
Group Mnemonic Meaning

first D double precision

second ITSOL
MATVEC
CREATE
APPLY

function of the routine - iterative solver, matrix
vector product, creation of preconditioner, or
application
of preconditioner.

third DEFAULTS
DRIVER
PCG
PLSCG
PBCG
PCGS
PGMRES
PTFQMR

options for the iterative solver

SDIA
UDIA
GENR

storage scheme options for matrix vector product

DIAG
POLY
ILU

preconditioner options for creation and application of
preconditioners

fourth ALL1

SDIA
UDIA
GENR

storage scheme options for creation and application of
preconditioners

fifth L
U

application of ILU preconditioner for UDIA and GENR
storage schemes

1This option is for the application of the diagonal preconditioner only.

For example, DMATVEC_UDIA is the routine that obtains the matrix-vector
product for the matrix stored using the unsymmetric diagonal (UDIA) storage
scheme. Similarly, DAPPLY_ILU_GENR_L applies the incomplete LU (ILU)
preconditioner for a matrix stored using the general storage by rows (GENR)
scheme. The L indicates that the lower triangular part of the LU preconditioner
is being considered.
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12.6 Summary of Iterative Solver Subroutines
Tables 12–10, 12–11, 12–12, and 12–13 summarize the subroutines for the
iterative solvers and the matrix operations.

Table 12–10 Summary of Iterative Solver Routines

Routine Operation

DITSOL_DEFAULTS Set the default values in the arrays IPARAM and RPARAM

DITSOL_DRIVER Driver routine for the iterative solvers

DITSOL_PCG Apply the preconditioned conjugate gradient method

DITSOL_PLSCG Apply the preconditioned least squares conjugate gradient
method

DITSOL_PBCG Apply the preconditioned biconjugate gradient method

DITSOL_PCGS Apply the preconditioned conjugate gradient squared method

DITSOL_PGMRES Apply the preconditioned generalized minimum residual
method

DITSOL_PTFQMR Apply the preconditioned transpose-free quasiminimal residual
method

Table 12–11 Summary of Matrix-Vector Product Routines

Routine Operation

DMATVEC_SDIA Matrix vector product for the symmetric diagonal storage
scheme

DMATVEC_UDIA Matrix vector product for the unsymmetric diagonal storage
scheme

DMATVEC_GENR Matrix vector product for the general storage by rows scheme

Table 12–12 Summary of Preconditioner Creation Routines

Routine Operation

DCREATE_DIAG_SDIA Create the diagonal preconditioner for the symmetric
diagonal storage scheme

DCREATE_DIAG_UDIA Create the diagonal preconditioner for the
unsymmetric diagonal storage scheme

DCREATE_DIAG_GENR Create the diagonal preconditioner for the general
storage by rows scheme

DCREATE_POLY_SDIA Create the polynomial preconditioner for the
symmetric diagonal storage scheme

DCREATE_POLY_UDIA Create the polynomial preconditioner for the
unsymmetric diagonal storage scheme

DCREATE_POLY_GENR Create the polynomial preconditioner for the general
storage by rows scheme

DCREATE_ILU_SDIA Create the incomplete LU preconditioner for the
symmetric diagonal storage scheme

(continued on next page)
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Table 12–12 (Cont.) Summary of Preconditioner Creation Routines

Routine Operation

DCREATE_ILU_UDIA Create the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme

DCREATE_ILU_GENR Create the incomplete LU preconditioner for the
general storage by rows scheme

Table 12–13 Summary of Preconditioner Application Routines

Routine Operation

DAPPLY_DIAG_ALL Apply the diagonal preconditioner for all storage
schemes

DAPPLY_POLY_SDIA Apply the polynomial preconditioner for the symmetric
diagonal storage scheme

DAPPLY_POLY_UDIA Apply the polynomial preconditioner for the
unsymmetric diagonal storage scheme

DAPPLY_POLY_GENR Apply the polynomial preconditioner for the general
storage by rows scheme

DAPPLY_ILU_SDIA Apply the incomplete LU preconditioner for the
symmetric diagonal storage scheme

DAPPLY_ILU_UDIA_L Apply the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme (operates on
the L part)

DAPPLY_ILU_UDIA_U Apply the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme (operates on
the U part)

DAPPLY_ILU_GENR_L Apply the incomplete LU preconditioner for the
general storage by rows scheme (operates on the L
part)

DAPPLY_ILU_GENR_U Apply the incomplete LU preconditioner for the
general storage by rows scheme (operates on the U
part)

12.7 Error Handling
The six iterative solver subroutines include an error flag in the argument list.
This is not an optional argument. On exit from the iterative solver routine, check
its value to ensure that the solver converged normally.

The error flag can have various values. A return value of 0 indicates a normal
return from the solver, with the iterations converging under the specified
conditions. A negative return value implies a fatal error such as incorrect input,
insufficient workspace, or use of a method inapplicable to the problem being
solved. In such cases, a fatal error message is printed out describing the problem
and control is returned to the calling routine. A positive return value of the
error flag indicates a warning, such as a method terminating after reaching
the maximum number of iterations. This is a correctable error if the maximum
number of iterations is set to a low value. However, it could also signal a more
fatal error such as the stagnation of the quantity being measured for convergence.
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Fatal error messages are always printed out. The only exception to this is when
the value of the unit number for output (iounit) is negative. In such cases, no
output is produced by the solver and therefore it is important to check the error
flag on exit.

In addition to the solvers, DXML provides routines for the creation and
application of various preconditioners for matrices stored using various storage
schemes. The preconditioner is created by a call to the appropriate routine prior
to calling the iterative solver. You must ensure that the preconditioner used does
indeed exist. For example, in the case of diagonal preconditioning, the elements
along the diagonal of the matrix must be nonzero. The routines that generate
the preconditioners do not explicitly check for the existence of the preconditioner.
Therefore, you could get an internal exception error, such as division by zero or
square-root of a negative number, that terminates the execution of the program.
In contrast, an error in the iterative solver does not terminate the execution.
Instead, the error flag is set and control returned to the calling program.

Table 12–14 shows the values of the error flags, an explanation of each value and
the action needed to recover from each error. The values –2100 through –2104
indicate a breakdown in the iterative process caused by either an inappropriate
input parameter or the use of an inappropriate method for the problem. The
remaining values, all negative, indicate that input data to the solver is invalid.

Table 12–14 Error Flags for Sparse Iterative Solver Subprograms

Error
Flag Description User Action

0 Normal exit No action required.

2001 Method did not converge Increase value of itmax; check that
rparam(2) is not stagnating.

–2001 Invalid ipcond Refer to subprogram description
for valid values and rerun with
acceptable value.

–2002 Invalid iolevel "

–2003 Invalid nipar "

–2004 Invalid nrwrk "

–2005 Invalid istop "

–2006 Invalid errtol "

–2007 Invalid n "

–2008 Invalid nrpar "

–2009 Zero denominator in the stopping
criterion

Rerun with a different stopping
criterion.

–2010 Invalid isolve Refer to Table 12–4 for valid values
and rerun with acceptable value.

–2011 Invalid iprec Refer to Table 12–4 for valid values
and rerun with acceptable value.

–2012 Invalid istore Refer to Table 12–4 for valid values
and rerun with acceptable value.

(continued on next page)

12–26 Using the Iterative Solvers for Sparse Linear Systems



Table 12–14 (Cont.) Error Flags for Sparse Iterative Solver Subprograms

Error
Flag Description User Action

–2100 Preconditioner is not positive-definite Rerun with a different
preconditioner or solver.

–2101 Matrix is not positive-definite Rerun with a different solver.

–2102 Breakdown in generation of direction
vector

Rerun with a different solver,
preconditioner, or starting guess.

–2103 Breakdown in update to solution vector Rerun with a different solver,
preconditioner, or starting guess.

–2104 Breakdown in gmres iteration Rerun with a different solver,
preconditioner, starting guess, or
kprev.

–2200 memory allocation routine in the parallel
version failed

Increase allocated values of
pagefile quota and virtual memory,
or reduce the number of processors,
or use serial version of the solver.

12.8 Hints on the Use of the Iterative Solver
The iterative solvers included in DXML provide you with a wide choice of
iterative methods and preconditioners. Additional flexibility is provided via the
adoption of a matrix-free formulation of the iterative method. This allows you
to use any storage scheme for the matrix, but implies that you have to write the
routines for the matrix operations. You also have the option of using routines
included in DXML for the matrix operations, but this restricts you to the storage
schemes and preconditioners provided by DXML. It is also possible to mix the two
approaches and use a storage scheme included in DXML, but provide your own
routines to create and apply the preconditioner of your choice.

DXML provides further flexibility by allowing you to set various parameters such
as the form of preconditioner, the stopping criterion, the maximum number of
iterations allowed, the degree of the polynomial for polynomial preconditioning
and so on. These enable you to control the iterative procedure and fine tune it to
suit the needs of your application.

The steps in using the iterative solver can be summarized as follows:

• Choose the storage scheme for the coefficient matrix A.

You can either choose one of the schemes provided by DXML (SDIA, UDIA, or
GENR) or choose your own storage scheme.

• Select an iterative method (DITSOL_PCG, DITSOL_PLSCG, DITSOL_
PBCG, DITSOL_PCGS, DITSOL_PGMRES, or DITSOL_PTFQMR), a form
of preconditioner (none, left, right, split, or SPD split), and if necessary, a
preconditioner (DIAG, POLY, or ILU).

The preconditioner and the form of preconditioning should match. For
example, DIAG and POLY preconditioners cannot be used in the split form as
they do not explicitly generate the matrices QL and QR. However, they can
be used in SPD split preconditioning as it requires only the matrix Q. The
form of preconditioning is chosen via the parameter ipcond (IPARAM(7)). You
also have the option of providing your own preconditioner.
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• Write the routines MATVEC (required) and, if necessary, the routines
PCONDL and PCONDR.

The reference descriptions for each iterative method at the end of this chapter
describe the functionality that must be provided by these routines. If you
have chosen your own storage scheme for the coefficient matrix or chosen
your own preconditioner, then you must provide the functionality required
by the routines MATVEC, PCONDL, and PCONDR. If, however, you have
chosen one of the preconditioners and storage schemes included in DXML,
the functionality required by these routines is provided via a call to the
appropriate DXML routines. In this case, you should be consistent in the use
of storage schemes, that is, the same storage schemes should be used in all
operations.

Whether you use the routines for the matrix operations provided by DXML
or not, it is your responsibility to provide the routine MATVEC and, if
applicable, the routines PCONDL and PCONDR, with the standard interface.

You also have the option of using the driver routine, DITSOL_DRIVER, in
which case, you do not have to provide the routines MATVEC, PCONDL and
PCONDR; instead you use the versions of these routines provided by DXML.

• Assign values to the variables in array IPARAM and RPARAM.

This could be done via a call to the routine DITSOL_DEFAULTS. The
routine DITSOL_DEFAULTS does not set the values of all parameters in
the arrays IPARAM and RPARAM and it is your responsibility to ensure
that all appropriate variables have been assigned valid values before a call
to the iterative solver. Information such as the size of the work arrays is
provided in the routine descriptions at the end of this chapter. In addition
to the assignment of values to the variables, any associated setup should
also be done at this time such as the opening of files for I/O. If you choose to
implement your own stopping criterion, you must provide the routine MSTOP,
with the standard interface given in Table 12–3.

• Generate the preconditioner.

This is done either by a call to one of DXML’s routines, if you are using a
storage scheme and preconditioner provided by DXML, or by writing your own
routine. Unlike the routines for the application of the preconditioner, there
is no standard interface for the routine to generate the preconditioner as it
is formed before the call to the iterative solver. However, the preconditioner
must be generated in a manner that would be consistent with the use of the
standard interface for the routines PCONDL and PCONDR.

If you use a DXML routine to generate the preconditioner, it is your
responsibility to ensure that the preconditioner does exist. For example,
in the case of diagonal preconditioning, the diagonal elements of the
coefficient matrix A must be nonzero. If a DXML routine is called to create
a preconditioner and it does not exist, the routine terminates with an
appropriate system message such as a division by zero error or a square-root
of a negative number error.

If you are using the driver routine, DITSOL_DRIVER, you must create the
appropriate preconditioner using the appropriate storage scheme, prior to the
call to the driver routine.

• Call the appropriate iterative solver routine with the standard interface given
in Table 12–7.
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On exit from the solver, the error flag, ierror, should be checked to ensure that
the iterations converged normally. A return value of 0 indicates a normal exit
from the routine SOLVER, with the iterations converging under the specified
conditions. A negative return value implies a fatal error such as incorrect
input or insufficient workspace, while a positive return value indicates
a warning such as the solver terminating after the maximum number of
iterations.

The best solver and preconditioner for a given problem is very dependent on the
problem itself. Often, a choice is made based on prior experience. In the absence
of this, the following factors may influence the selection of a particular solver or
preconditioner:

• Applicability of a solver

Each solver is applicable under certain conditions. Some solvers can be
applied to symmetric matrices only; others require the evaluation of bothA�x
and AT � x. The reference description for each solver includes the conditions
under which it is applicable. These must be considered in the choice of a
solver for a problem.

• Effectiveness of a preconditioner

Based on the properties of the problem, some preconditioners may be more
effective than others in improving the convergence of a solver. However, the
increase in time per iteration due to the use of the preconditioner must also
be taken into account. For example, increasing the degree of the polynomial
in polynomial preconditioning will increase the time per iteration, but may
not always reduce the number of iterations sufficiently to lead to an overall
reduction in the execution time.

• Amount of memory available

Different solvers and preconditioners require different amounts of memory.
For example, the generalized minimum residual method (DITSOL_PGMRES)
allows you to use a variable number of previous residual vectors. As this
number increases, the work done per iteration, and the memory required,
also increase. Often, but not always, there is a corresponding increase in the
convergence rate. A limited amount of memory may preclude the choice of a
sufficiently large number of previous residual vectors to ensure convergence.

In addition to choosing a solver and a preconditioner, you also have the choice
of a stopping criterion. It is important to select carefully the condition that
determines when the iterative process will be terminated. DXML includes four
stopping criteria. It also allows you the option of writing your own version.
In some cases, a stopping criterion may be obtained at a low cost from the
iterative process. But, this may not be the most effective criterion for judging the
convergence of your particular problem. In the initial stages of experimenting
with different stopping criteria, it may help to calculate the residual of the system
explicitly at the end of the iterative process in order to determine if the choice of
stopping criteria was an appropriate one.

The preceding guidelines should be taken into consideration in your choice of a
solver, preconditioner and stopping criterion. As this choice is very dependent
on the problem, some experimentation may be necessary to determine the most
efficient method. DXML provides you a flexible interface that allows different
solvers, preconditioners and stopping criterion to be tested easily. In addition,
the input parameters allow you to generate extensive information on the solution
process. These can be used to gain a better insight into the behavior of various
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solvers and preconditioners for your problem, helping you to choose a combination
that will provide a solution efficiently.

12.9 A Look at Some Iterative Solvers
To illustrate the use of the sparse iterative solvers and the concepts of matrix-free
formulation and preconditioning, consider the linear system of equations derived
from the discretization of the Laplace’s equation on the unit square with Dirichlet
boundary conditions, using the standard five point central differencing scheme:

�uxx � uyy = 0

0�x�1
0�y�1

Assuming nx grid points in x direction and ny grid points in the y direction, the
coefficient matrix A has the following form for nx = ny = 4:

4 -1 | -1 | |
-1 4 -1 | -1 | |

-1 4 -1 | -1 | |
-1 4 | -1 | |

-----------|-------------|------------|-----------
-1 | 4 -1 |-1 |

-1 | -1 4 -1 | -1 |
-1 | -1 4 -1 | -1 |

-1 | -1 4 | -1 |
-----------|-------------|------------|-----------

| -1 | 4 -1 |-1
| -1 |-1 4 -1 | -1
| -1 | -1 4 -1 | -1
| -1 | -1 4 | -1

-----------|-------------|------------|-----------
| |-1 | 4 -1
| | -1 |-1 4 -1
| | -1 | -1 4 -1
| | -1 | -1 4

The elements not defined in the matrix are zero. The exact solution is assumed
to be all 1.0 and the starting guess is the zero vector.

Examples 12–1, 12–2, 12–3, and 12–4 illustrate the use of the iterative solvers,
the various storage schemes and the preconditioners. Each example is self-
contained, with comments indicating the operations being performed. The output
files created by the example programs illustrate the information that can be
obtained from the iterative solvers by the setting of appropriate parameters.

These examples illustrate the use of the DXML iterative solver routines from
Fortran, C, and C++ codes. Additional examples are included on-line in the
/usr/examples/dxml directory.
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Example 12–1 Iterative Solver with User-Defined Routines (Fortran Code)

PROGRAM EXAMPLE_ITSOL

C
C ***** THIS PROGRAM ILLUSTRATES THE FOLLOWING:
C
C (1) USE OF THE SOLVER TO SOLVE THE TEST PROBLEM VIA
C PRECONDITIONED CONJUGATE GRADIENT METHOD, USING A
C USER-DEFINED STORAGE SCHEME.
C (2) USE OF A USER-DEFINED ROUTINE MATVEC
C (3) USE OF A USER DEFINED ROUTINE MSTOP
C (4) USE OF USER DEFINED ROUTINE PCONDL
C (5) USE OF THE ROUTINE DITSOL_DEFAULTS
C (6) INFORMATION PRINTED OUT FOR IOLEVEL = 3
C

IMPLICIT REAL*8 (A-H, O-Z)
C

PARAMETER (NMAX = 100)
C

REAL*8 X(NMAX), XO(NMAX), RHS(NMAX), QL(NMAX)
REAL*8 RPARAM(50), RWORK(4*NMAX), DUM, TEMP

C
INTEGER IPARAM(50), IA(2), IDUM
INTEGER I,NX, NY, NXNY

C
COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

C
EXTERNAL MATVEC, PCONDL, USER_MSTOP

C
C ***** SET UP PROBLEM SIZE
C

NX = 10
NY = 10
NXNY = NX*NY

C
C ***** SET THE PARAMETERS (INTEGER AND REAL)
C

CALL DITSOL_DEFAULTS (IPARAM, RPARAM)
C
C ***** CHANGE ANY VALUES THAT ARE DIFFERENT FROM THE DEFAULT
C ASSIGN VALUES TO PARAMETERS NOT SET BY ROUTINE DITSOL_DEFAULTS
C CHANGE IOUNIT TO 7
C CHANGE IPCOND TO 4 (FOR SPD SPLIT PRECONDITIONING)
C CHANGE IOLEVEL TO 3
C CHANGE ISTOP TO 0 (FOR USER DEFINED MSTOP)
C A NONZERO VALUE OF ISTOP WILL SELECT ONE OF THE STANDARD
C STOPPING CRITERIA
C

IPARAM(3) = 0
IPARAM(4) = 4*NXNY
IPARAM(5) = 7
IPARAM(6) = 3
IPARAM(7) = 4
IPARAM(8) = 0

(continued on next page)
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Example 12–1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code)

C
C ***** SETUP OUTPUT FILE
C

IOUNIT = IPARAM(5)
OPEN (UNIT=IOUNIT,FILE=’OUTPUT.DATA’,STATUS=’UNKNOWN’)
REWIND IOUNIT

C
WRITE (IOUNIT,101)

101 FORMAT (/,2X,’SOLVING EXAMPLE PROBLEM WITH SPD SPLIT
$ PRECONDITIONED CG’,/,2X,’DIAGONAL PRECONDITIONING USED ’,/)

C
C ***** GENERATE THE MATRIX (USE IA TO PASS NX AND NY TO SOLVER)
C

CALL GENMAT(NX, NY, NXNY)
IA(1) = NX
IA(2) = NY

C
C ***** GENERATE XO, THE TRUE SOLUTION
C

DO I = 1, NXNY
XO(I) = 1.0D0

END DO
C
C ***** OBTAIN THE RIGHT HAND SIDE
C

CALL MATVEC (0, IPARAM, RPARAM, A, IA, DUM, XO, RHS, NXNY)
C
C ***** OBTAIN INITIAL GUESS (ALL ZEROS)
C

DO I = 1, NXNY
X(I) = 0.0D0

END DO
C
C ***** GENERATE THE DIAGONAL PRECONDITIONER
C

CALL GEN_PCOND (NXNY, QL)
C
C ***** CALL THE SOLVER
C

CALL DITSOL_PCG ( MATVEC, PCONDL, DUM, USER_MSTOP, A, IA,
$ X, RHS, NXNY, QL, IDUM, DUM, IDUM,
$ IPARAM, RPARAM, IDUM, RWORK, IERROR)

C
C ***** PRINT OUT THE SOLUTION
C

WRITE (IOUNIT,102)
102 FORMAT (/,5X,’TRUE SOLUTION’,5X,’SOLUTION FROM SOLVER’,

$5X,’ABS. DIFFERENCE’/)
WRITE (IOUNIT,103) (XO(I),X(I),ABS(XO(I)-X(I)),I=1,NXNY)

103 FORMAT (/,3(5X,E15.8))
C
C ***** FIND MAX ERROR IN SOLUTION
C

TEMP = ABS(XO(1) - X(1))

(continued on next page)
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Example 12–1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code)

DO I = 2, NXNY
TEMP = MAX( TEMP, ABS(XO(I) - X(I)) )

END DO
WRITE (IOUNIT,104) TEMP

104 FORMAT (/,2X,’MAX ERROR IN SOLUTION= ’, E15.8,/)
C

STOP
END

C
C
C

SUBROUTINE MATVEC(JOB, IPARAM, RPARAM, A, IA, W, X, Y, N)
C
C ***** MULTIPLY THE VECTOR X BY THE MATRIX TO OBTAIN VECTOR Y
C ONLY JOB = 0 NEEDED FOR THIS EXAMPLE
C

IMPLICIT REAL*8 (A-H,O-Z)
C

REAL*8 X(*), Y(*), A(*)
INTEGER IA(*)

C
CALL MULA (IA(1), IA(2), N, X, Y)

C
RETURN
END

C
C
C

SUBROUTINE PCONDL(JOB, IPARAM, RPARAM, QL, IQL, A, IA,
$ W, X, Y, N)

C
C ***** CALL THE LEFT PRECONDITIONER
C ONLY JOB = 0 NEEDED FOR THIS EXAMPLE
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(*), Y(*), QL(*)
INTEGER N

C
C ***** DIAGONAL PRECONDITIONING
C

CALL APPLY_PCOND_DIA (N, X, Y, QL)
C

RETURN
END

C
C
C

SUBROUTINE GEN_PCOND (N, QL)
C
C ***** GENERATE THE LEFT PRECONDITIONER
C

IMPLICIT REAL*8 (A-H,O-Z)

(continued on next page)
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Example 12–1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code)

PARAMETER (NMAX = 100)
REAL*8 QL(*)
COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
INTEGER N

C
DO I = 1, N

QL(I) = 1.0D0 / A3(I)
END DO

C
RETURN
END

C
C
C

SUBROUTINE APPLY_PCOND_DIA (N, X, Y, QL)
C
C ***** APPLY THE DIAGONAL PRECONDITIONER
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(*), Y(*), QL(*)

C
DO I = 1, N

Y(I) = X(I) * QL(I)
END DO

C
RETURN
END

C
C
C

SUBROUTINE GENMAT (NX, NY, NXNY)
C
C ***** GENERATE THE MATRIX FOR THE EXAMPLE
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NMAX = 100)
COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

C
DO I = 1, NXNY

A3(I) = 4.0D0
A1(I) = 0.0D0
A2(I) = 0.0D0
A4(I) = 0.0D0
A5(I) = 0.0D0

END DO
C

DO J = 1, NY
DO I = 2, NX

K = (J-1)*NX+I
A2(K) = -1.0D0

END DO
DO I = 1, NX-1

K = (J-1)*NX+I
A4(K) = -1.0D0

END DO
END DO

C
DO J = 2, NY

DO I = 1, NX
K = (J-1)*NX+I

(continued on next page)
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A1(K) = -1.0D0
END DO

END DO
C

DO J = 1, NY-1
DO I = 1, NX

K = (J-1)*NX+I
A5(K) = -1.0D0

END DO
END DO

C
RETURN
END

C
C
C

SUBROUTINE MULA (NX, NY, NXNY, TMP1, TMP2)
C
C ***** TO OBTAIN THE MATRIX VECTOR MULTIPLY
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NMAX = 100)
REAL*8 TMP1(*), TMP2(*)
INTEGER NX,NY,NXNY
COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

C
DO I = 1, NXNY

TMP2(I) = A3(I)*TMP1(I)
END DO

C
DO I = 1, NXNY-1

TMP2(I) = TMP2(I) +
$ A4(I)*TMP1(I+1)

END DO
C

DO I = 2, NXNY
TMP2(I) = TMP2(I) +

$ A2(I)*TMP1(I-1)
END DO

C
DO I = 1, NXNY-NX

TMP2(I) = TMP2(I) +
$ A5(I)*TMP1(I+NX)

END DO
C

DO I = NX+1, NXNY
TMP2(I) = TMP2(I) +

$ A1(I)*TMP1(I-NX)
END DO

C
RETURN
END

C
C
C

(continued on next page)
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SUBROUTINE USER_MSTOP (IPARAM, RPARAM, X, R, Z, B, N)
C
C ***** ROUTINE FOR THE USER PROVIDED STOPPING CRITERION
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(*), B(*), R(*), Z(*), RPARAM(*), STPTST
INTEGER ITERS, IPARAM(*)

C
IOUNIT = IPARAM(5)
ITERS = IPARAM(10)
IF (ITERS.EQ.0) THEN

WRITE(IOUNIT, 100)
100 FORMAT(/,2X,’USING USER DEFINED STOPPING CRITERION’,/)

END IF
C
C ***** USER DEFINED STOPPING CRITERION USES MAX NORM OF RESIDUAL FOR
C STPTST
C

STPTST = ABS (R(1))
DO I = 2, N

STPTST = MAX ( STPTST,ABS(R(I)) )
END DO

C
RPARAM(2) = STPTST

C
RETURN
END
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SOLVING EXAMPLE PROBLEM WITH SPD SPLIT PRECONDITIONED CG
DIAGONAL PRECONDITIONING USED

METHOD USED : CG WITH SPD SPLIT PRECONDITIONING
ORDER OF SYSTEM = 100
STOPPING CRITERION USED : 0
MAXIMUM ITERATIONS ALLOWED: 100
TOLERANCE FOR CONVERGENCE : 0.10000000e-05

USING USER DEFINED STOPPING CRITERION
ITERATION = 0 STOPPING TEST = 0.20000000e+01
ITERATION = 1 STOPPING TEST = 0.92307692e+00
ITERATION = 2 STOPPING TEST = 0.58793970e+00
ITERATION = 3 STOPPING TEST = 0.63509006e+00
ITERATION = 4 STOPPING TEST = 0.42973063e+00
ITERATION = 5 STOPPING TEST = 0.48724587e+00
ITERATION = 6 STOPPING TEST = 0.41781094e+00
ITERATION = 7 STOPPING TEST = 0.50288290e+00
ITERATION = 8 STOPPING TEST = 0.17070529e+00
ITERATION = 9 STOPPING TEST = 0.38502953e-01
ITERATION = 10 STOPPING TEST = 0.16076790e-01
ITERATION = 11 STOPPING TEST = 0.75548469e-02
ITERATION = 12 STOPPING TEST = 0.15431168e-02
ITERATION = 13 STOPPING TEST = 0.14025362e-03
ITERATION = 14 STOPPING TEST = 0.42745516e-05
ITERATION = 15 STOPPING TEST = 0.63333204e-15

SOLUTION OBTAINED AFTER 15 ITERATIONS
NORMAL EXIT FROM SOLVER
FINAL VALUE OF STOPPING TEST = 0.63333204e-15

TRUE SOLUTION SOLUTION FROM SOLVER ABS. DIFFERENCE
0.10000000e+01 0.10000000e+01 0.33306691e-15
0.10000000e+01 0.10000000e+01 0.44408921e-15

:
: (EDITED FOR BREVITY)

0.10000000e+01 0.10000000e+01 0.33306691e-15
0.10000000e+01 0.10000000e+01 0.33306691e-15

MAX ERROR IN SOLUTION= 0.23314684e-14
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PROGRAM EXAMPLE_ITSOL

C
C ***** THIS PROGRAM ILLUSTRATES THE FOLLOWING:
C
C (1) USE OF THE SOLVER TO SOLVE THE TEST PROBLEM VIA
C PRECONDITIONED GMRES METHOD METHOD, WITH SPLIT INCOMPLETE
C CHOLESKY PRECONDITIONING. THE MATRIX IS STORED USING
C THE UNSYMMETRIC DIAGONAL FORMAT
C (2) USE OF ROUTINE MATVEC (DMATVEC_UDIA)
C (3) USE OF ROUTINES PCONDL AND PCONDR TO CALL ROUTINES FOR
C APPLYING THE PRECONDITIONER (DAPPLY_ILU_UDIA_L AND
C DAPPLY_ILU_UDIA_U)
C (5) USE OF THE ROUTINE DITSOL_DEFAULTS
C

IMPLICIT REAL*8 (A-H, O-Z)
C

PARAMETER (NMAX = 100)
PARAMETER (NDIM = 100)
PARAMETER (KPREV_MAX = 5)
PARAMETER (NWK = NMAX*(KPREV_MAX+2) +

$ KPREV_MAX*(KPREV_MAX+5)+1 )
C

REAL*8 X(NMAX), XO(NMAX), RHS(NMAX)
REAL*8 RPARAM(50), RWORK(NWK), DUM
REAL*8 A_UDIA(NDIM,5), P_ILU(NDIM,5), TEMP
INTEGER IP_ILU(5), INDEX_UDIA(5)

C
INTEGER IPARAM(50), IDUM
INTEGER I, NX, NY, NXNY

C
EXTERNAL MATVEC, PCONDL, PCONDR

C
C ***** SET UP PROBLEM SIZE
C

NX = 10
NY = 10
NXNY = NX*NY
NZEROS = 5

C
C ***** SET THE PARAMETERS (INTEGER AND REAL)
C

CALL DITSOL_DEFAULTS (IPARAM, RPARAM)
C
C ***** CHANGE ANY VALUES THAT ARE DIFFERENT FROM THE DEFAULT
C ASSIGN VALUES TO PARAMETERS NOT SET BY DITSOL_DEFAULTS
C CHANGE IOUNIT TO 7
C CHANGE IPCOND TO 3 (FOR SPLIT PRECONDITIONING)
C CHANGE IOLEVEL TO 3
C CHANGE ISTOP TO 3 (ONLY ISTOP=3 AND 4 ALLOWED)
C

IPARAM(3) = 0
IPARAM(4) = NWK

C
IPARAM(5) = 7
IPARAM(6) = 3
IPARAM(7) = 3
IPARAM(8) = 3

C
C ***** ASSIGN VALUE TO KPREV (NUMBER OF PREVIOUS RESIDUALS STORED)

(continued on next page)
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C NOTE THAT THE SIZE OF RWORK ALLOWS A MAXIMUM VALUE OF
C KPREV = 5
C

IPARAM(34) = 3
C
C ***** SETUP OUTPUT FILE
C

IOUNIT = IPARAM(5)
OPEN (UNIT=IOUNIT,FILE=’OUTPUT.DATA’,STATUS=’UNKNOWN’)
REWIND IOUNIT

C
WRITE (IOUNIT,101)

101 FORMAT (/,2X,’SOLVING EXAMPLE PROBLEM WITH SPLIT
$ PRECONDITIONED GMRES’,/,2X,’ILU PRECONDITIONING USED ’,/
$ 2X,’MATRIX STORED IN UNSYMMETRIC DIAGONAL FORMAT’,/)

C
C ***** GENERATE THE MATRIX
C

CALL GENMAT(NX, NY, NXNY, A_UDIA, INDEX_UDIA, NDIM, NZEROS)
IPARAM(31) = NZEROS
IPARAM(32) = NDIM

C
C ***** GENERATE XO, THE TRUE SOLUTION
C

DO I = 1, NXNY
XO(I) = 1.0D0

END DO
C
C ***** OBTAIN THE RIGHT HAND SIDE
C

CALL MATVEC (0, IPARAM, RPARAM, A_UDIA, INDEX_UDIA,
$ DUM, XO, RHS, NXNY)

C
C ***** OBTAIN INITIAL GUESS (ALL ZEROS)
C

DO I = 1, NXNY
X(I) = 0.0D0

END DO
C
C ***** GENERATE THE ILU PRECONDITIONER
C

CALL DCREATE_ILU_UDIA (A_UDIA, INDEX_UDIA, NDIM, NZEROS,
$ P_ILU, IP_ILU, NXNY)

C
C ***** CALL THE SOLVER
C

CALL DITSOL_PGMRES ( MATVEC, PCONDL, PCONDR, DUM,
$ A_UDIA, INDEX_UDIA,
$ X, RHS, NXNY,
$ P_ILU, IP_ILU, P_ILU, IP_ILU,
$ IPARAM, RPARAM, IDUM, RWORK, IERROR)

C
C ***** PRINT OUT THE SOLUTION
C

(continued on next page)
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WRITE (IOUNIT,102)
102 FORMAT (/,5X,’TRUE SOLUTION’,5X,’SOLUTION FROM SOLVER’,

$5X,’ABS. DIFFERENCE’/)
WRITE (IOUNIT,103) (XO(I),X(I),ABS(XO(I)-X(I)),I=1,NXNY)

103 FORMAT (/,3(5X,E15.8))
C
C ***** FIND MAX ERROR IN SOLUTION
C

TEMP = ABS(XO(1) - X(1))
DO I =2,NXNY

TEMP = MAX( TEMP, ABS(XO(I) - X(I)) )
END DO
WRITE(IOUNIT,104) TEMP

104 FORMAT(/,2X,’MAX ERROR IN SOLUTION = ’, E15.8,/)
C

STOP
END

C
C
C

SUBROUTINE MATVEC(JOB, IPARAM, RPARAM, A, IA, DUM, X, Y, N)
C
C MULTIPLY N VECTOR X BY MATRIX TO OBTAIN Y
C

IMPLICIT REAL*8 (A-H,O-Z)
C

REAL*8 X(*), Y(*), A(*), RPARAM(*)
INTEGER IA(*), JOB, IPARAM(*)

C
NZEROS = IPARAM(31)
NDIM = IPARAM(32)

C
CALL DMATVEC_UDIA (JOB, A, IA, NDIM, NZEROS, DUM,

$ X, Y, N)
C

RETURN
END

C
C
C

SUBROUTINE PCONDL(JOB, IPARAM, RPARAM, QL, IQL, A, IA,
$ W, X, Y, N)

C
C ***** CALL THE LEFT PRECONDITIONER
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NMAX = 100)
REAL*8 X(*), Y(*), RPARAM(*), QL(*), A(*), TMP(NMAX)
INTEGER JOB, IPARAM(*), IQL(*), IA(*)

C
C ***** ILU PRECONDITIONING
C

IPCOND = IPARAM(7)
NZEROS = IPARAM(31)
NDIM = IPARAM(32)

(continued on next page)

12–40 Using the Iterative Solvers for Sparse Linear Systems



Example 12–2 (Cont.) Iterative Solver with DXML Routines (Fortran Code)
C

CALL DAPPLY_ILU_UDIA_L (JOB, QL, IQL, NDIM, NZEROS,
$ X, Y, N)

C
RETURN
END

C
C
C

SUBROUTINE PCONDR(JOB, IPARAM, RPARAM, QR, IQR, A, IA,
$ W, X, Y, N)

C
C ***** CALL THE RIGHT PRECONDITIONER
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(*), Y(*), RPARAM(*), QR(*), A(*)
INTEGER JOB, IPARAM(*), IQR(*), IA(*)

C
C ***** ILU PRECONDITIONING
C

IPCOND = IPARAM(7)
NZEROS = IPARAM(31)
NDIM = IPARAM(32)

C
CALL DAPPLY_ILU_UDIA_U (JOB, QR, IQR, NDIM, NZEROS,

$ X, Y, N)
C

RETURN
END

C
C
C

SUBROUTINE GENMAT (NX, NY, NXNY, A, IA, NDIM, NZEROS)
C
C ***** GENERATE THE MATRIX FOR THE EXAMPLE IN THE UNSYMMETRIC
C DIAGONAL FORM
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 A(NDIM,*)
INTEGER IA(*)

C
DO J = 2, NZEROS

DO I = 1, NXNY
A(I,J) = 0.0D0

END DO
END DO

C
DO I = 1, NXNY

A(I,1) = 4.0D0
END DO

C
DO J = 1, NY-1

DO I = 1, NX
K = (J-1)*NX+I
A(K,2) = -1.0D0

END DO
END DO

(continued on next page)
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C
DO J = 1, NY

DO I = 2, NX
K = (J-1)*NX+I
A(K,3) = -1.0D0

END DO
END DO

C
DO J = 1, NY

DO I = 1, NX-1
K = (J-1)*NX+I
A(K,4) = -1.0D0

END DO
END DO

C
DO J = 2, NY

DO I = 1, NX
K = (J-1)*NX+I
A(K,5) = -1.0D0

END DO
END DO

C
IA(1) = 0
IA(2) = NX
IA(3) = -1
IA(4) = 1
IA(5) = -NX

C
RETURN
END
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SOLVING EXAMPLE PROBLEM WITH SPLIT PRECONDITIONED GMRES
ILU PRECONDITIONING USED
MATRIX STORED IN UNSYMMETRIC DIAGONAL FORMAT

METHOD USED : GMRES WITH SPLIT PRECONDITIONING
3 PREVIOUS RESIDUAL VECTORS ARE STORED

ORDER OF SYSTEM = 100
STOPPING CRITERION USED : 3
MAXIMUM ITERATIONS ALLOWED: 100
TOLERANCE FOR CONVERGENCE : 0.10000000e-05

ITERATION = 0 STOPPING TEST = 0.27403910e+01
ITERATION = 1 STOPPING TEST = 0.83454209e+00
ITERATION = 2 STOPPING TEST = 0.44870733e+00
ITERATION = 3 STOPPING TEST = 0.17433646e+00
ITERATION = 4 STOPPING TEST = 0.72856695e-01
ITERATION = 5 STOPPING TEST = 0.38408003e-01
ITERATION = 6 STOPPING TEST = 0.14164437e-01
ITERATION = 7 STOPPING TEST = 0.56991076e-02
ITERATION = 8 STOPPING TEST = 0.28790502e-02
ITERATION = 9 STOPPING TEST = 0.13411353e-02
ITERATION = 10 STOPPING TEST = 0.63725219e-03
ITERATION = 11 STOPPING TEST = 0.32213502e-03
ITERATION = 12 STOPPING TEST = 0.13084728e-03
ITERATION = 13 STOPPING TEST = 0.54223092e-04
ITERATION = 14 STOPPING TEST = 0.27502204e-04
ITERATION = 15 STOPPING TEST = 0.13133042e-04
ITERATION = 16 STOPPING TEST = 0.63404914e-05
ITERATION = 17 STOPPING TEST = 0.32280646e-05
ITERATION = 18 STOPPING TEST = 0.13311315e-05
ITERATION = 19 STOPPING TEST = 0.55695871e-06

SOLUTION OBTAINED AFTER 19 ITERATIONS
NORMAL EXIT FROM SOLVER
FINAL VALUE OF STOPPING TEST = 0.55695871e-06

TRUE SOLUTION SOLUTION FROM SOLVER ABS. DIFFERENCE
0.10000000e+01 0.99999997e+00 0.32325871e-07
0.10000000e+01 0.99999987e+00 0.13396025e-06

:
: (edited for brevity)
:

0.10000000e+01 0.99999983e+00 0.16690401e-06
0.10000000e+01 0.99999995e+00 0.48797753e-07

MAX ERROR IN SOLUTION = 0.78315035e-06
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/*
*****************************************************************************
* *
* Copyright Digital Equipment Corporation 1993 - 1995. All rights reserved.*
* *
* Restricted Rights: Use, duplication, or disclosure by the U.S. *
* Government is subject to restrictions as set forth in subparagraph *
* (c) (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR *
* 52.227-14 Alt. III, as applicable. *
* *
* This software is proprietary to and embodies the confidential *
* technology of Digital Equipment Corporation. Possession, use, or *
* copying of this software and media is authorized only pursuant to a *
* valid written license from Digital or an authorized sublicensor. *
* *
*****************************************************************************

*/
/*

This is an example program to illustrate the use of the iterative
solver ditsol_pcg from a C application program. The program generates
the matrix and the preconditioner, calls the solver and prints the
maximum error in the solution. The right hand side of the problem is
generated assuming a known solution. The problem used is identical to
the one in the example section of the chapter on iterative solvers
in the DXML Reference Guide.

This program illustrates the following:
- routine naming convention for Digital Unix and VMS
- differences in array limits between Fortran and C:

C default: x[n] -> 0 to (n-1)
Fortran default: x(n) -> 1 to n

- how to store two dimensional arrays in C for use in a
Fortran library routine

- how to use the matrix-free formulation from a C program

For more detailed explanation of the routines used, please
check the Reference Manual or manpage or the Fortran example
programs in this directory.

Note: the code used in this example works on both Digital Unix and
VMS. Conditional compilation is used to select the statements appropriate
to each operating system.

All output from this program is sent to the screen.

*/

#include <stdio.h>
#include <stdlib.h>

#define ABS(x) (((x) < 0) ? -(x) : (x))
#define MAX(x,y) (((x) < (y)) ? (y) : (x))

/*
Add trailing underscores to Fortran routines on Digital Unix.

*/

(continued on next page)
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#if !defined(vms) && !defined(__vms)
#define ditsol_defaults ditsol_defaults_
#define dcreate_ilu_sdia dcreate_ilu_sdia_
#define ditsol_pcg ditsol_pcg_
#define dmatvec_sdia dmatvec_sdia_
#define dapply_ilu_sdia dapply_ilu_sdia_
#endif

extern void pcondl1();
extern void matvec1();
extern void genmat1();
extern void ditsol_defaults();
extern void dcreate_ilu_sdia();
extern void ditsol_pcg();
extern void dmatvec_sdia();
extern void dapply_ilu_sdia();

/*
illustrating the use of the iterative solver:
preconditioned conjugate gradient method, with incomplete
cholesky preconditioning. the matrix is stored using the
symmetric diagonal format

*/

int main()
{

double *a_sdia;
double *a_ilu;
double *rwork1;
double *rhs;
double *x;
double *xo;

double rparam[50];

double dum, max1, tmp1;

int *index_sdia;
int *index_ilu;

int iparam[50];

int nx, ny, nxny, length, ndim, nzeros;
int i, j, idum, ierror;
int job;

/*
define the size of the problem

*/

nx = 10;
ny = 10;
nzeros = 3;
nxny = nx * ny;
ndim = nxny;

/*
get the memory for the 2-dimensional arrays a_sdia and a_ilu

*/

a_sdia = (double *)malloc (nzeros*ndim*sizeof(double));
if (a_sdia == 0) perror("malloc");

a_ilu = (double *)malloc (nzeros*ndim*sizeof(double));
if (a_ilu == 0) perror("malloc");

(continued on next page)
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/*
get the memory for the 1-dimensional arrays

*/

rwork1 = (double *)malloc(4*nxny*sizeof(double));
if (rwork1 == 0) perror("malloc");

rhs = (double *)malloc(nxny*sizeof(double));
if (rhs == 0) perror("malloc");

x = (double *)malloc(nxny*sizeof(double));
if (x == 0) perror("malloc");

xo = (double *)malloc(nxny*sizeof(double));
if (xo == 0) perror("malloc");

index_sdia = (int *)malloc(nzeros*sizeof(int));
if (index_sdia == 0) perror("malloc");

index_ilu = (int *)malloc(nzeros*sizeof(int));
if (index_ilu == 0) perror("malloc");

/*
set the parameters (integer and real)

*/

ditsol_defaults(iparam, rparam);

iparam[2] = 0;
iparam[3] = 4 * nxny;

/*
direct all output to the screen

*/

iparam[4] = 6;
iparam[5] = 3;
iparam[6] = 4;

/*
generate the matrix

*/

genmat1(nx, ny, nxny, a_sdia, index_sdia, ndim, nzeros);

iparam[30] = nzeros;
iparam[31] = ndim;

/*
generate xo, the true solution

*/

for (i=0; i<nxny; i++)
xo[i] = 1.0;

/*
obtain the right hand side

*/

job = 0;
matvec1(&job, iparam, rparam, a_sdia, index_sdia,

&dum, xo, rhs, &nxny);

/*
obtain initial guess (all zeros)

*/

(continued on next page)
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for (i=0; i<nxny; i++)
x[i] = 0.0;

/*
generate the preconditioner

*/

dcreate_ilu_sdia(a_sdia, index_sdia, &ndim, &nzeros,
a_ilu, index_ilu, &nxny);

/*
call the solver

*/

ditsol_pcg(matvec1, pcondl1, &dum, &dum,
a_sdia, index_sdia,
x, rhs, &nxny,
a_ilu, index_ilu, &dum, &idum,
iparam, rparam, &idum, rwork1, &ierror);

if (ierror != 0)
printf("ditsol_pcg returned with error flag: %d\n",ierror);

/*
find the maximum absolute error in the solution

*/

max1 = ABS((x[0]-xo[0]));

for (i=1; i<nxny; i++)
{

tmp1 = ABS((x[i]-xo[i]));
max1 = MAX((max1),(tmp1));

}

/*
print the maximum absolute error

*/

printf("maximum error in the solution: %.10e\n",max1);

/*
release the memory

*/

free(a_sdia);
free(a_ilu);
free(rwork1);
free(rhs);
free(x);
free(xo);
free(index_sdia);
free(index_ilu);

} /* end of main() */

/*
generate the matrix for the problem described in the chapter on
iterative solvers in the DXML Reference Guide

*/

void genmat1(int nx, int ny, int nxny, double a[],
int index[], int ndim, int nzeros)

{
int i, j, k;

(continued on next page)
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for (j=0; j<nxny; j++)
for (i=1; i<nzeros; i++)

a[i*ndim+j] = 0.0;

for (j=0; j<nxny; j++)
a[0*ndim+j] = 4.0;

for (j=0; j<ny; j++)
for (i=1; i<nx; i++)

{
k = j * nx + i;
a[2*ndim+k] = -1.0;

}

for (j=1; j<ny; j++)
for (i=0; i<nx; i++)

{
k = j * nx + i;
a[1*ndim+k] = -1.0;

}
index[0] = 0;
index[2] = -1;
index[1] = -nx;

} /* end of genmat1() */

/*
provide the matrix-vector routine using the standard parameter list
as described in the DXML Refernce Guide

*/

void matvec1(int *job, int *iparam, double *rparam, double *a, int *ia,
double *w, double *x, double *y, int *n)

{
int nzeros, ndim;
double dum;

nzeros = iparam[30];
ndim = iparam[31];

dmatvec_sdia(job, a, ia, &ndim, &nzeros, &dum, x, y, n);

} /* end of matvec1() */

/*
provide the left preconditioning routine using the standard parameter
list as described in the DXML Refernce Guide

*/

void pcondl1(int *job, int *iparam, double *rparam, double *ql, int *iql,
double *a, int *ia, double *w, double *x, double *y, int *n)

{
int job1;
int nzeros, ndim;

double *tmp;

/*
ilu preconditioning

*/

nzeros = iparam[30];
ndim = iparam[31];

(continued on next page)
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/*
get memory for temporary vector

*/

tmp = (double *)malloc((*n)*sizeof(double));

job1 = 0;
dapply_ilu_sdia(&job1, ql, iql, &ndim, &nzeros, x, tmp, n);
job1 = 1;
dapply_ilu_sdia(&job1, ql, iql, &ndim, &nzeros, tmp, y, n);

/*
release memory for temporary vector

*/

free(tmp);

} /* end of pcondl1() */

Output from Example 3
method used : cg with spd split preconditioning
order of system = 100
stopping criterion used = 1
maximum iterations allowed = 100
tolerance for convergence = 0.10000000E-05

iteration = 0 stopping test = 0.69282032E+01
iteration = 1 stopping test = 0.19194193E+01
iteration = 2 stopping test = 0.12100937E+01
iteration = 3 stopping test = 0.52439623E+00
iteration = 4 stopping test = 0.84029860E-01
iteration = 5 stopping test = 0.20539881E-01
iteration = 6 stopping test = 0.34309306E-02
iteration = 7 stopping test = 0.47063334E-03
iteration = 8 stopping test = 0.16605002E-03
iteration = 9 stopping test = 0.45072557E-04
iteration = 10 stopping test = 0.72087304E-05
iteration = 11 stopping test = 0.88047573E-06

solution obtained after 11 iterations
normal exit from solver
final value of stopping test = 0.88047573E-06

maximum error in the solution: 5.6260082260e-08
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//
// ***************************************************************************
// *
// * Copyright Digital Equipment Corporation 1993 - 1995. All rights reserved.
// *
// * Restricted Rights: Use, duplication, or disclosure by the U.S.
// * Government is subject to restrictions as set forth in subparagraph
// * (c) (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR
// * 52.227-14 Alt. III, as applicable.
// *
// * This software is proprietary to and embodies the confidential
// * technology of Digital Equipment Corporation. Possession, use, or
// * copying of this software and media is authorized only pursuant to a
// * valid written license from Digital or an authorized sublicensor.
// *
// ***************************************************************************
//
//
// This is an example program to illustrate the use of the iterative
// solver ditsol_pcg from a C application program. The program generates
// the matrix and the preconditioner, calls the solver and prints the
// maximum error in the solution. The right hand side of the problem is
// generated assuming a known solution. The problem used is identical to
// the one in the example section of the chapter on iterative solvers
// in the DXML Reference Guide.
//
// This program illustrates the following:
// - routine naming convention for Digital Unix and VMS
// - Differences in endexing arrays:
// C default: x[n] -> 0 to (n-1)
// Fortran default: x(n) -> 1 to n
// - how to use two dimensional arrays in C to interface with a
// Fortran library routine
// - how to use the matrix-free formulation from a C program
//
// For more detailed explanation of the routines used, please
// check the DXML Reference Manual.
//
// Note: the code used in this example works on both Digital Unix and
// VMS. Conditional compilation is used to select the statements
// appropriate to each operating system.
//
// All output from this program is sent to the screen.
//

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <new.h>

//
// Add trailing underscores to Fortran routines on Digital Unix.
//

#if !defined(vms) && !defined(__vms)
#define ditsol_defaults ditsol_defaults_
#define dcreate_ilu_sdia dcreate_ilu_sdia_
#define ditsol_pcg ditsol_pcg_
#define dmatvec_sdia dmatvec_sdia_
#define dapply_ilu_sdia dapply_ilu_sdia_
#endif

(continued on next page)
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inline double ABS(double x)
{

return(((x) < 0) ? -(x) : (x));
}

inline double MAX(double x, double y)
{

return(((x) < (y)) ? (y) : (x));
}

extern void (*set_new_handler(void (*memory_err)()))();
void memory_err()
{

cout << "memory allocation error\n";
exit(1); // quit program

}

extern void pcondl1(int &, int [], double [],
double [], int [],
double [], int [],
double [], double [], double [], int &);

extern void matvec1(int &, int [], double [],
double [], int [],
double [], double [], double [], int &);

extern void genmat1(int, int, int,
double [], int [],
int, int);

//
// Declare the Fortran routines
//

extern "C"
{
void ditsol_defaults(int [], double []);
void dcreate_ilu_sdia(double [], int [],

int &, int &,
double [], int [],
int &);

void ditsol_pcg(void (*)(int &, int [], double [],
double [], int [],
double [], double [], double [],
int &),

void (*)(int &, int [], double [],
double [], int [],
double [], int [],
double [], double [], double [], int &),

double &, double &,
double [], int [],
double [], double [], int &,
double [], int [],
double &, int &,
int [], double [],
int &, double [],
int &);

void dmatvec_sdia(int &, double [], int [],
int &, int &, double [], double [], double [],
int &);

void dapply_ilu_sdia(int &,
double [], int [],
int [], int [],
double [], double [], int &);

(continued on next page)
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}

//
// illustrating the use of the iterative solver:
// preconditioned conjugate gradient method, with incomplete
// cholesky preconditioning. the matrix is stored using the
// symmetric diagonal format
//

void main()
{

double *a_sdia;
double *a_ilu;
double *rwork1;
double *rhs;
double *x;
double *xo;

double rparam[50];

double dum, max1, tmp1;

int *index_sdia;
int *index_ilu;

int iparam[50];

int nxny, length, ndim, nzeros;
int i, j, idum, ierror;
int job;

// set up exception handler

set_new_handler(memory_err);

// define the problem size

const int nx = 10;
const int ny = 10;

nxny = nx * ny;
ndim = nxny;
nzeros = 3;

// allocate memory for the 2-dimensional arrays

a_sdia = new double [nzeros*ndim];
a_ilu = new double [nzeros*ndim];

// allocate memory for the 1-dimensional arrays

rwork1 = new double [4*nxny];
rhs = new double [nxny];
x = new double [nxny];
xo = new double [nxny];

index_sdia = new int [nzeros];
index_ilu = new int [nzeros];

// set the parameters (integer and real)

ditsol_defaults(iparam, rparam);

iparam[2] = 0;
iparam[3] = 4 * nxny;

// direct all output to the screen

(continued on next page)
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iparam[4] = 6;
iparam[5] = 3;
iparam[6] = 4;

// generate the matrix

genmat1(nx, ny, nxny,
a_sdia, index_sdia,
ndim, nzeros);

iparam[30] = nzeros;
iparam[31] = ndim;

// generate xo, the true solution

for (i=0; i<nxny; i++)
xo[i] = 1.0;

// obtain the right hand side

job = 0;
matvec1(job, iparam, rparam,

a_sdia, index_sdia,
&dum, xo, rhs, nxny);

// obtain initial guess (all zeros)

for (i=0; i<nxny; i++)
x[i] = 0.0;

// generate the preconditioner

dcreate_ilu_sdia(a_sdia, index_sdia,
ndim, nzeros,
a_ilu, index_ilu,
nxny);

// call the solver

ditsol_pcg(matvec1, pcondl1, dum, dum,
a_sdia, index_sdia,
x, rhs, nxny,
a_ilu, index_ilu,
dum, idum,
iparam, rparam,
idum, rwork1,
ierror);

if (ierror != 0)
cout << "ditsol_pcg returned with error flag: " << ierror

<< endl;

// find the maximum absolute error in the solution

max1 = ABS((x[0]-xo[0]));

for (i=1; i<nxny; i++)
{

tmp1 = ABS((x[i]-xo[i]));
max1 = MAX((max1),(tmp1));

}
// print the maximum absolute error

cout << "maximum error in the solution: " << max1 << endl;

// deallocate the memory

(continued on next page)
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delete a_sdia;
delete a_ilu;
delete rwork1;
delete xo;
delete x;
delete rhs;

delete index_sdia;
delete index_ilu;

} // end of main()

//
// generate the matrix for the problem described in the chapter on
// iterative solvers in the DXML Reference Guide
//

void genmat1(int nx, int ny, int nxny,
double a[], int index[],
int ndim, int nzeros)

{
int i, j, k;

for (j=0; j<nxny; j++)
for (i=1; i<nzeros; i++)

a[i*ndim+j] = 0.0;

for (j=0; j<nxny; j++)
a[0*ndim+j] = 4.0;

for (j=0; j<ny; j++)
for (i=1; i<nx; i++)

{
k = j * nx + i;
a[2*ndim+k] = -1.0;

}

for (j=1; j<ny; j++)
for (i=0; i<nx; i++)

{
k = j * nx + i;
a[1*ndim+k] = -1.0;

}

index[0] = 0;
index[2] = -1;
index[1] = -nx;

} // end of genmat1()

//
// provide the matrix-vector routine using the standard parameter list
// as described in the DXML Reference Guide
//

void matvec1(int &job, int iparam[], double rparam[],
double a[], int ia[],
double w[], double x[], double y[], int &n)

{
int nzeros, ndim;
double dum;

(continued on next page)
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nzeros = iparam[30];
ndim = iparam[31];

dmatvec_sdia(job, a, ia, ndim, nzeros, &dum, x, y, n);

} // end of matvec1()

//
// provide the left preconditioning routine using the standard parameter
// list as described in the DXML Refernce Guide
//

void pcondl1(int &job, int iparam[], double rparam[],
double ql[], int iql[],
double a[], int ia[],
double w[], double x[], double y[], int &n)

{
int nzeros, ndim, job1;
double *tmp;

// ilu preconditioning

nzeros = iparam[30];
ndim = iparam[31];

// allocate temporary storage

tmp = new double [n];

job1 = 0;
dapply_ilu_sdia(job1, ql, iql, &ndim, &nzeros, x, tmp, n);
job1 = 1;
dapply_ilu_sdia(job1, ql, iql, &ndim, &nzeros, tmp, y, n);

// deallocate temporary storage

delete tmp;

} // end of pcondl1()

Output from Example 4

method used : cg with spd split preconditioning
order of system = 100
stopping criterion used = 1
maximum iterations allowed = 100
tolerance for convergence = 0.10000000E-05

iteration = 0 stopping test = 0.69282032E+01
iteration = 1 stopping test = 0.19194193E+01
iteration = 2 stopping test = 0.12100937E+01
iteration = 3 stopping test = 0.52439623E+00
iteration = 4 stopping test = 0.84029860E-01
iteration = 5 stopping test = 0.20539881E-01
iteration = 6 stopping test = 0.34309306E-02
iteration = 7 stopping test = 0.47063334E-03
iteration = 8 stopping test = 0.16605002E-03
iteration = 9 stopping test = 0.45072557E-04
iteration = 10 stopping test = 0.72087304E-05
iteration = 11 stopping test = 0.88047573E-06

solution obtained after 11 iterations
normal exit from solver
final value of stopping test = 0.88047573E-06

maximum error in the solution: 5.6260082260e-08
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This section provides descriptions of the iterative solver subprograms for real
double-precision operations. The subprograms are grouped by functionality
starting with the iterative solvers, followed by the routines for matrix-vector
product, the routines for the creation of the preconditioners, and finally the
routines for the application of the preconditioners.





DITSOL_DEFAULTS

DITSOL_DEFAULTS
Set Default Values

Format

DITSOL_DEFAULTS (iparam, rparam)

Arguments

iparam
integer*4
On entry, a one-dimensional array of length at least 50.
On exit, the variables in the IPARAM array are assigned the default values,
listed in Table 12–4. Of the first 50 elements, the variables that are not assigned
a default value, are set equal to zero.

rparam
real*8
On entry, a one-dimensional array of length at least 50.
On exit, the variables in the RPARAM array are assigned the default values,
listed in Table 12–5. Of the first 50 elements, the variables that are not assigned
a default value, are set equal to zero.

Description

DITSOL_DEFAULTS sets the default values for the variables in the arrays
IPARAM and RPARAM. Of the first 50 elements, the variables that are not
assigned a default value, are set equal to zero. It is your responsibility to ensure
that any variables in IPARAM and RPARAM that are required by the iterative
solver are set to an appropriate value before the call to the solver routine.
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DITSOL_DRIVER
Driver for Sparse Iterative Solvers (Serial and Parallel Versions)

Format

DITSOL_DRIVER (dmatvec_driver, dpcondl_driver, dpcondr_driver, mstop, a, ia, x, b, n, ql, iql , qr, iqr,
iparam, rparam, iwork, rwork, ierror)

Arguments

DITSOL_DRIVER has the standard parameter list for an iterative solver, with
the exception of the first three arguments which must be DMATVEC_DRIVER,
DPCONDL_DRIVER, and DPCONDR_DRIVER. These must be declared external
in your calling (sub)program.

Description

DITSOL_DRIVER solves the system of linear equations:

A � x = b

using one of the five iterative methods provided in DXML. By a suitable choice of
the variables isolve, istore and iprec in the array IPARAM, an appropriate solver,
storage scheme and preconditioner are selected. The preconditioner must be
created in the appropriate storage scheme, prior to the call to the driver routine.

The following table shows the preconditioning options and the preconditioners
that are permitted:

Preconditioner Left Right Split SPD Split

Diagonal X X X
Polynomial X X X
ILU X X X X

The preconditioning options applicable to the various iterative solvers are
summarized in Table 12–8.

The following table shows the real workspace requirements (nrwk) for each
method and the corresponding preconditioning option:

Method None Left Right Split

DITSOL_PCG 3n 4n (SPD split)
DITSOL_PLSCG 4n 5n 5n 6n

DITSOL_PBCG 5n 7n 6n 7n

DITSOL_PCGS 6n 7n 6n 7n

DITSOL_PGMRES nrwk1 nrwk1 + n nrwk1 + n nrwk1 + n

DITSOL_PTFQMR 7n 8n 8n 9n
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In DITSOL_PGMRES, nrwk1 = n � (kprev +1)+ kprev � (kprev +5)+ 1 where kprev
is the number of previous vectors stored. If ILU preconditioning is used, then an
additional real workspace of length n is required.

If you use the option of defining your own MSTOP routine, see the reference
description of each solver for the definition of the vector z. format.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PCG
Preconditioned Conjugate Gradient Method
(Serial and Parallel Versions)

Format

DITSOL_PCG (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam, iwork,
rwork, ierror)

Arguments

DITSOL_PCG has the standard parameter list for an iterative solver.

Description

DITSOL_PCG implements the conjugate gradient method [Hestenes and Stiefel
1952, Reid 1971] for the solution of a linear system of equations where the
coefficient matrix A is symmetric positive definite or mildly nonsymmetric. This
method requires the routine MATVEC to provide operations for job = 0. The
routines MATVEC, PCONDL (if used) and MSTOP (if used) should be declared
external in your calling (sub)program. PCONDR is not used by DITSOL_PCG
and is therefore a dummy input parameter.

DXML provides the following two forms of the method:

• Unpreconditioned conjugate gradient method:
This is the conjugate gradient method applied to:

A � x = b

where A is a symmetric positive definite or a mildly nonsymmetric matrix. As
no preconditioning is used, both PCONDL and PCONDR are dummy input
parameters.
For the unpreconditioned conjugate gradient method, the length of the real
work space array, defined by the variable nrwk (IPARAM(4)), should be at
least 3 � n, where n is the order of the matrix A.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Conjugate gradient method with symmetric positive definite split
preconditioning:
This is the conjugate gradient method applied to:

(Q�1
L � A �Q�T

L ) � (QT
L � x) = (Q�1

L � b)

where:
Q = QL �QT

L

is the symmetric positive definite preconditioning matrix. The routine
PCONDL, with job= 0 should evaluate:

v = Q�1 � u

The routine PCONDR is not used and an explicit split of the preconditioner Q
into QL and QR is not required.
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For the conjugate gradient method, with symmetric positive definite split
preconditioning, the length of the real work space array, defined by the
variable nrwk (IPARAM(4)), should be at least 4 � n, where n is the order
of the matrix A. This does not include the memory requirements of the
preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1 � r
where r is the residual at the i-th iteration.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PLSCG
Preconditioned Least Square Conjugate Gradient Method
(Serial and Parallel Versions)

Format

DITSOL_PLSCG (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam, iwork,
rwork, ierror)

Arguments

DITSOL_PLSCG has the standard parameter list for an iterative solver.

Description

The least squares conjugate gradient is a robust method for the solution of
general linear systems. It is equivalent to applying the conjugate gradient
method to the normal equations:

AT �A � x = AT � b
This method requires the evaluation of two matrix products, involving matrix A
and AT . It suffers from the drawback that the condition number of AT � A is the
square of the condition number of A, and therefore the convergence of the method
is slow. To alleviate the numerical instability resulting from a straightforward
application of the conjugate gradient method to the normal equations, DXML
adopts the implementation proposed in [Björck and Elfving 1979].

The implementation of the least squares conjugate gradient method requires the
routine MATVEC to provide operations for both job= 0 and job= 1. The routines
MATVEC, PCONDL (if used), PCONDR (if used) and MSTOP (if used) should be
declared external in your calling (sub)program.

DXML provides the following four forms of the method:

• Unpreconditioned least squares conjugate gradient method:
This is the conjugate gradient method applied to:

AT � A � x = AT � b
where A is a general matrix. As no preconditioning is used, both PCONDL
and PCONDR are dummy input parameters.
For the unpreconditioned least squares conjugate gradient method, the length
of the real work space array, defined by the variable nrwk (IPARAM(4)),
should be at least 4 � n, where n is the order of the matrix A.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Least squares conjugate gradient method with left preconditioning:
This is the conjugate gradient method applied to:

(AT �Q�T
L �Q�1

L � A) � x = (AT �Q�T
L �Q�1

L � b)
The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and with job= 1 should evaluate:

v = Q�T
L � u

The routine PCONDR is not used and is therefore a dummy input parameter.
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For the least squares conjugate gradient method, with left preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 5*n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
• Least squares conjugate gradient method with right preconditioning:

This is the conjugate gradient method applied to:

(Q�T
R � AT � A �Q�1

R ) � y = (Q�T
R �AT � b)

where:
y = QR � x

The routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

and with job= 1 should evaluate:

v = Q�T
R � u

The routine PCONDL is not used and is therefore a dummy input parameter.
For the least squares conjugate gradient method, with right preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 5*n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Least squares conjugate gradient method with split preconditioning:
This is the conjugate gradient method applied to:

(Q�T
R � AT �Q�T

L �Q�1
L � A �Q�1

R ) � y = (Q�T
R �AT �Q�T

L �Q�1
L � b)

where:
y = QR � x

The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and with job= 1 should evaluate:

v = Q�T
L � u

The routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

and with job= 1 should evaluate:

v = Q�T
R � u
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For the least squares conjugate gradient method, with split preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 6 � n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PBCG
Preconditioned Biconjugate Gradient Method
(Serial and Parallel Versions)

Format

DITSOL_PBCG (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam, iwork,
rwork, ierror)

Arguments

DITSOL_PBCG has the standard parameter list for an iterative solver.

Description

The biconjugate gradient method is a method for the solution of nonsymmetric
linear systems of equations. It is similar to the conjugate gradient method but
generates two sequences of mutually orthogonal residuals [Fletcher 1976]. While
there is no solid theoretical basis for the convergence behavior of the biconjugate
gradient method, it can be efficient for some classes of problems. This method
requires two matrix products involving the matrix A and AT , but there is no
squaring of the condition number.

The implementation of the biconjugate gradient method requires the routine
MATVEC to provide operations for both job= 0 and job= 1. The routines
MATVEC, PCONDL (if used), PCONDR (if used), and MSTOP (if used) should be
declared external in your calling (sub)program.

DXML provides the following four forms of the method:

• Unpreconditioned biconjugate gradient method:
This is the biconjugate gradient method applied to:

A � x = b

where A is a general matrix. As no preconditioning is used, both PCONDL
and PCONDR are dummy input parameters.
For the unpreconditioned bi-conjugate gradient method, the length of the real
work space array, defined by the variable nrwk (IPARAM(4)), should be at
least 5 � n, where n is the order of the matrix A.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Bi-conjugate gradient method with left preconditioning:
This is the bi-conjugate gradient method applied to:

(Q�1
L �A) � x = (Q�1

L � b)
The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and with job= 1 should evaluate:

v = Q�T
L � u

The routine PCONDR is not used and is therefore a dummy input parameter.
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For the biconjugate gradient method, with left preconditioning, the length of
the real work space array, defined by the variable nrwk (IPARAM(4)), should
be at least 7 � n, where n is the order of the matrix A. This does not include
the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
• Biconjugate gradient method with right preconditioning:

This is the bi-conjugate gradient method applied to:

(A �Q�1
R ) � y = b

where:
y = QR � x

The routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

and with job= 1 should evaluate:

v = Q�T
R � u

The routine PCONDL is not used and is therefore a dummy input parameter.
For the biconjugate gradient method, with right preconditioning, the length of
the real work space array, defined by the variable nrwk (IPARAM(4)), should
be at least 6*n, where n is the order of the matrix A. This does not include
the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Biconjugate gradient method with split preconditioning:
This is the biconjugate gradient method applied to:

(Q�1
L �A �Q�1

R ) � y = (Q�1
L � b)

where:
y = QR � x

The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and with job= 1 should evaluate:

v = Q�T
L � u

The routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

and with job= 1 should evaluate:

v = Q�T
R � u
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For the biconjugate gradient method, with split preconditioning, the length of
the real work space array, defined by the variable nrwk (IPARAM(4)), should
be at least 7 � n, where n is the order of the matrix A. This does not include
the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PCGS
Preconditioned Conjugate Gradient Squared Method
(Serial and Parallel Versions)

Format

DITSOL_PCGS (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam, iwork,
rwork, ierror)

Arguments

DITSOL_PCGS has the standard parameter list for an iterative solver.

Description

The conjugate gradient squared method [Sonneveld 1989] accelerates the
convergence of the biconjugate gradient method by generating residuals which
are related to the original residual by the square of a polynomial in A, instead of
a polynomial in A, as in the case of the conjugate gradient and the bi-conjugate
gradient methods. In practice, this results in the conjugate gradient squared
method converging roughly twice as fast as the biconjugate gradient method.
The additional advantage is that only the matrix A is involved and not AT . The
computational cost for both the biconjugate gradient method and the conjugate
gradient squared method are about the same per iteration.

The implementation of the conjugate gradient squared method requires the
routine MATVEC to provide operations for job= 0. The routines MATVEC,
PCONDL (if used), PCONDR (if used), and MSTOP (if used) should be declared
external in your calling (sub)program.

DXML provides the following four forms of the method:

• Unpreconditioned conjugate gradient squared method:
This is the conjugate gradient squared method applied to:

A � x = b

where A is a general matrix. As no preconditioning is used, both PCONDL
and PCONDR are dummy input parameters.
For the unpreconditioned conjugate gradient squared method, the length of
the real work space array, defined by the variable nrwk (IPARAM(4)), should
be at least 6 � n, where n is the order of the matrix A.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Conjugate gradient squared method with left preconditioning:
This is the conjugate gradient squared method applied to:

(Q�1
L � A) � x = (Q�1

L � b)

The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

The routine PCONDR is not used and is therefore a dummy input parameter.
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For the conjugate gradient squared method, with left preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 7 � n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is defined
as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
• Conjugate gradient squared method with right preconditioning:

This is the conjugate gradient squared method applied to:

(A �Q�1
R ) � y = b

where:
y = QR � x

The routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

The routine PCONDL is not used and is therefore a dummy input parameter.
For the conjugate gradient squared method, with right preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 6 � n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.

The vector z, passed as an input argument to the routine MSTOP, is not
defined.

• Conjugate gradient squared method with split preconditioning:
This is the conjugate gradient squared method applied to:

(Q�1
L � A �Q�1

R ) � y = (Q�1
L � b)

where:
y = QR � x

The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and the routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

For the conjugate gradient squared method, with split preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 7 � n, where n is the order of the matrix
A. This does not include the memory requirements of the preconditioner.
For split preconditioning, the vector z, passed as an input argument to the
routine MSTOP, is defined as:

z = Q�1
L � r

where r is the residual at the i-th iteration.
This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PGMRES
Preconditioned Generalized Minimum Residual Method
(Serial and Parallel Versions)

Format

DITSOL_PGMRES (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam,
iwork, rwork, ierror)

Arguments

DITSOL_PGMRES has the standard parameter list for an iterative solver.

Description

The generalized minimum residual method [Saad and Schultz 1986] obtains a
solution x of the form:

x = x0 + z

where x0 is the initial guess and z is a vector that minimizes the two norm of the
residual:

r = b� A � (x0 + z)

over the Krylov space:

K = span
n
r0; Ar0; A

2r0; :::; A
k�1r0

o
of dimension k, with the initial residual r0 defined as:

r0 = b� A � x0

DXML implements the restarted generalized minimum residual method, where
the method is restarted every kprev steps. This implies that only the kprev
residuals need to be stored, instead of all the previous residuals as in the
generalized minimum residual method, resulting in a substantial savings in
memory.

The choice of kprev is crucial and requires some skill and experience — too small
a value could result in poor convergence or no convergence at all, while too large
a value could result in excessive memory requirements. kprev should be assigned
a value prior to a call to DITSOL_PGMRES with the parameter IPARAM(34) in
the array IPARAM. A suggested starting value for kprev is in the range of 3 to 6.
If convergence is not obtained, the value should be increased.

While the generalized minimum residual method is applicable to a general
problem and the residuals guaranteed not to increase, it is possible for the
residuals to stagnate and for the convergence criterion never to be satisfied.
Therefore, the convergence of the method should be monitored closely.

The two norm of the residual generated by the generalized minimum residual
method is obtained during its implementation at no extra cost. However, this is
the residual of the system to which the method is applied, which, in the left and
split preconditioned case is the preconditioned residual Q�1

L � r. To obtain the
true residual, a non-negligible amount of extra computation would be required.
Hence, for this method, only stopping criteria (12–5) and (12–6) are allowed.
Additionally, a user-defined MSTOP is not allowed. In the unpreconditioned case,
the stopping criteria default to (12–3) and (12–4), respectively. Thus only istop =
3 and istop = 4 are permitted for the preconditioned case.
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The implementation of the generalized minimum residual method requires the
routine MATVEC to provide operations for job= 0. The routines MATVEC,
PCONDL (if used), PCONDR (if used) should be declared external in your calling
(sub)program. A user-defined MSTOP is not allowed.

DXML provides the following four forms of the method:

• Unpreconditioned generalized minimum residual method:
This is the generalized minimum residual method applied to:

A � x = b

where A is a general matrix. As no preconditioning is used, both PCONDL
and PCONDR are dummy input parameters.
For the unpreconditioned generalized minimum residual method, the length
of the real work space array, defined by the variable nrwk (IPARAM(4)),
should be at least:

nrwk = n � (kprev + 1) + kprev � (kprev + 5) + 1

where n is the order of the matrix A and kprev is the number of previous
residuals stored.

• Generalized minimum residual method with left preconditioning:
This is the generalized minimum residual method applied to:

(Q�1
L �A) � x = (Q�1

L � b)

The routine PCONDL, with job = 0 should evaluate:

v = Q�1
L � u

The routine PCONDR is not used and is therefore a dummy input parameter.
For the generalized minimum residual method, with left preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least:

nrwk = n � (kprev + 2) + kprev � (kprev + 5) + 1

where n is the order of the matrix A and kprev is the number of previous
residuals stored. This does not include the memory requirements of the
preconditioner.

• Generalized minimum residual method with right preconditioning:
This is the generalized minimum residual method applied to:

(A �Q�1
R ) � y = b

where:
y = QR � x

The routine PCONDR, with job = 0 should evaluate:

v = Q�1
R � u

The routine PCONDL is not used.
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For the generalized minimum residual method, with right preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least:

nrwk = n � (kprev + 2) + kprev � (kprev + 5) + 1

where n is the order of the matrix A and kprev is the number of previous
residuals stored. This does not include the memory requirements of the
preconditioner.

• GMRES with split preconditioning: This is the generalized minimum residual
method applied to:

(Q�1
L �A �Q�1

R ) � y = (Q�1
L � b)

where:
y = QR � x

The routine PCONDL, with job= 0 should evaluate:

v = Q�1
L � u

and the routine PCONDR, with job= 0 should evaluate:

v = Q�1
R � u

For the generalized minimum residual method, with split preconditioning,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least:

nrwk = n � (kprev + 2) + kprev � (kprev + 5) + 1

where n is the order of the matrix A and kprev is the number of previous
residuals stored. This does not include the memory requirements of the
preconditioner.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DITSOL_PTFQMR
Preconditioned Transpose_free Quasiminimal Residual Method
(Serial and Parallel Versions)

Format

DITSOL_PTFQMR (matvec, pcondl, pcondr, mstop, a, ia, x, b, n, ql, iql , qr, iqr, iparam, rparam,
iwork, rwork, ierror)

Arguments

DITSOL_PTFQMR has the standard parameter list for an iterative solver.

Description

The quasiminimal residual (QMR) method [Freund and Nachtigal 1991] is one
of the algorithms proposed as a remedy for the irregular convergence behavior
of the bi-conjugate gradient and the conjugate gradient squared algorithms.
Since these algorithms are not characterized by a minimization property, the
residual norm often oscillates wildly. The QMR algorithm, by generating iterates
that are defined by a quasiminimization of the residual norm, results in smooth
convergence curves.

DXML includes TFQMR, the transpose-free variant of the QMR method,
implemented without look-ahead [Freund 1993]. The implementation of the
transpose-free quasiminimal residual method requires the routine MATVEC
to provide operations for job = 0. The routines MATVEC, PCONDL (if used),
PCONDR (if used) and MSTOP (if used) should be declared external in your
calling (sub)program.

An upper bound for the two norm of the residual of the system being solved,
is obtained during the implementation of the TFQMR method at no extra cost.
This is the residual of the system to which the method is applied, which in the
left and split preconditioned case is the preconditioned residual, Q�1

L � r. To
obtain the true residual, a non-negligible amount of extra computation would be
required. Hence, for this method, only stopping criteria (12–5) and (12–6) are
allowed. In the unpreconditioned case, the stopping criteria default to (12–3) and
(12–4), respectively. Thus only istop = 3 and istop = 4 are permitted for both the
preconditioned and unpreconditioned case. Additionally, a user-defined MSTOP
is allowed, but the vectors r and z, corresponding to the real and preconditioned
residuals, respectively, and passed as input parameters to the routine MSTOP,
are undefined.

DXML provides the following four forms of the method:

• Unpreconditioned transpose-free, quasiminimal residual method:
This is the transpose-free, quasiminimal residual method applied to:

A � x = b

where A is a general matrix. As no preconditioning is used, both PCONDL
and PCONDR are dummy input parameters.
For the unpreconditioned transpose-free, quasiminimal residual method,
the length of the real work space array, defined by the variable nrwk
(IPARAM(4)), should be at least 7 � n, where n is the order of the matrix
A.
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The vectors r and z, passed as input arguments to the routine MSTOP, are
not defined.

• Transpose-free, quasiminimal residual method with left preconditioning:
This is the transpose-free, quasiminimal residual method applied to:

(Q�1
L � A) � x = (Q�1

L � b)
The routine PCONDL, with job = 0 should evaluate:

v = Q�1
L � u

The routine PCONDR is not used and is therefore a dummy input parameter.
For the transpose-free, quasiminimal residual method, with left
preconditioning, the length of the real work space array, defined by the
variable nrwk (IPARAM(4)), should be at least 8 � n, where n is the order
of the matrix A. This does not include the memory requirements of the
preconditioner.

The vectors r and z, passed as input arguments to the routine MSTOP, are
undefined.

• Transpose-free, quasiminimal residual method with right preconditioning:
This is the transpose-free, quasiminimal residual method applied to:

(A �Q�1
R ) � y = b

where:
y = QR � x

The routine PCONDR, with job = 0 should evaluate:

v = Q�1
R � u

The routine PCONDL is not used and is therefore a dummy input parameter.
For the transpose-free, quasiminimal residual method, with right
preconditioning, the length of the real work space array, defined by the
variable nrwk (IPARAM(4)), should be at least 8 � n, where n is the order
of the matrix A. This does not include the memory requirements of the
preconditioner.

The vectors r and z, passed as input arguments to the routine MSTOP, are
undefined.

• Transpose-free, quasiminimal residual method with split preconditioning:
This is the transpose-free, quasiminimal residual method applied to:

(Q�1
L �A �Q�1

R ) � y = (Q�1
L � b)

where:
y = QR � x

The routine PCONDL, with job = 0 should evaluate:

v = Q�1
L � u

and the routine PCONDR, with job = 0 should evaluate:

v = Q�1
R � u

For the transpose-free, quasiminimal residual method, with split
preconditioning, the length of the real work space array, defined by the
variable nrwk (IPARAM(4)), should be at least 9 � n, where n is the order
of the matrix A. This does not include the memory requirements of the
preconditioner. The vectors r and z, passed as input arguments to the routine
MSTOP, are undefined.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DMATVEC_SDIA
Matrix-Vector Product for Symmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DMATVEC_SDIA (job, a, ia, ndim, nz, w, x, y, n )

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = A � x
job = 1 : y = AT � x
job = 2 : y = w � A � x
job = 3 : y = w � AT � x

On exit, job is unchanged.

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

w
real*8
On entry, a one-dimensional array of length at least n containing the vector w
when job = 2 or 3. The elements are accessed with unit increment. When job =
0 or 1, array W is not needed so w can be a dummy parameter.
On exit, w is unchanged.
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x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DMATVEC_SDIA obtains the matrix-vector product for a sparse matrix stored
using the symmetric diagonal storage scheme. Depending on the value of the
input parameter job, either the matrix or its transpose is used in the operation.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DMATVEC_UDIA
Matrix-Vector Product for Unsymmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DMATVEC_UDIA (job, a, ia, ndim, nz, w, x, y, n )

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = A � x
job = 1 : y = AT � x
job = 2 : y = w � A � x
job = 3 : y = w � AT � x

On exit, job is unchanged.

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

w
real*8
On entry, a one-dimensional array of length at least n containing the vector w
when job = 2 or 3. The elements are accessed with unit increment. When job =
0 or 1, array W is not needed so w can be a dummy parameter.
On exit, w is unchanged.
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x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DMATVEC_UDIA obtains the matrix-vector product for a sparse matrix stored
using the unsymmetric diagonal storage scheme. Depending on the value of the
input parameter job, either the matrix or its transpose is used in the operation.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DMATVEC_GENR
Matrix-Vector Product for General Storage by Rows
(Serial and Parallel Versions)

Format

DMATVEC_GENR (job, a, ia, ja, nz, w, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = A � x
job = 1 : y = AT � x
job = 2 : y = w � A � x
job = 3 : y = w � AT � x

On exit, job is unchanged.

a
real*8
On entry, a one-dimensional array of length at least nz containing the nonzero
elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in arrays JA and A.
On exit, ia is unchanged.

ja
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix A, stored using the general storage
by rows scheme.
On exit, ja is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array A.
On exit, nz is unchanged.

w
real*8
On entry, a one-dimensional array of length at least n containing the vector w
when job = 2 or 3. The elements are accessed with unit increment. When job =
0 or 1, array W is not needed so w can be a dummy parameter.
On exit, w is unchanged.
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x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DMATVEC_GENR obtains the matrix-vector product for a sparse matrix stored
using the general storage by rows scheme. Depending on the value of the input
parameter job, either the matrix or its transpose is used in the operation.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_DIAG_SDIA
Generate Diagonal Preconditioner for Symmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DCREATE_DIAG_SDIA (a, ia, ndim, nz, p, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least n.
On exit, array P contains information for use by the diagonal preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_DIAG_SDIA computes the information required by the diagonal
preconditioner for a sparse matrix stored using the symmetric diagonal storage
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner.

The routine DCREATE_DIAG_SDIA is called prior to a call to one of the iterative
solver routines with diagonal preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_DIAG_UDIA
Generate Diagonal Preconditioner for Unsymmetric Diagonal Storage

(Serial and Parallel Versions)

Format

DCREATE_DIAG_UDIA (a, ia, ndim, nz, p, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least n.
On exit, array P contains information for use by the diagonal preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_DIAG_UDIA computes the information required by the diagonal
preconditioner for a sparse matrix stored using the unsymmetric diagonal storage
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner.

The routine DCREATE_DIAG_UDIA is called prior to a call to one of the iterative
solver routines with diagonal preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_DIAG_GENR
Generate Diagonal Preconditioner for General Storage by Rows
(Serial and Parallel Versions)

Format

DCREATE_DIAG_GENR (a, ia, ja, nz, p, n)

Arguments

a
real*8
On entry, a one-dimensional array of length at least nz containing the nonzero
elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in arrays JA and A.
On exit, ia is unchanged.

ja
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix A.
On exit, ja is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least n.
On exit, array P contains information for use by the diagonal preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_DIAG_GENR computes the information required by the diagonal
preconditioner for a sparse matrix stored using the general storage by rows
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner.

The routine DCREATE_DIAG_GENR is called prior to a call to one of the
iterative solver routines with diagonal preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.

Sparse Iterative Solver Routines 12–89



DCREATE_POLY_SDIA

DCREATE_POLY_SDIA
Generate Polynomial Preconditioner for Symmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DCREATE_POLY_SDIA (a, ia, ndim, nz, p, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3 � n.
On exit, array P contains information for use by the polynomial preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_POLY_SDIA computes the information required by the polynomial
preconditioner for a sparse matrix stored using the symmetric diagonal storage
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner. Part of the array P is used
as workspace during the application of the preconditioner.

The routine DCREATE_POLY_SDIA is called prior to a call to one of the iterative
solver routines with polynomial preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_POLY_UDIA
Generate Polynomial Preconditioner for Unsymmetric Diagonal
Storage (Serial and Parallel Versions)

Format

DCREATE_POLY_UDIA (a, ia, ndim, nz, p, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3 � n.
On exit, array P contains information for use by the polynomial preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_POLY_UDIA computes the information required by the polynomial
preconditioner for a sparse matrix stored using the unsymmetric diagonal storage
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner. Part of the array P is used
as workspace during the application of the preconditioner.

The routine DCREATE_POLY_UDIA is called prior to a call to one of the iterative
solver routines with polynomial preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_POLY_GENR
Generate Polynomial Preconditioner for General Storage by Rows
(Serial and Parallel Versions)

Format

DCREATE_POLY_GENR (a, ia, ja, nz, p, n)

Arguments

a
real*8
On entry, a one-dimensional array of length at least nz containing the nonzero
elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in arrays JA and A.
On exit, ia is unchanged.

ja
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix A.
On exit, ja is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3 � n.
On exit, array P contains information for use by the diagonal preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_POLY_GENR computes the information required by the polynomial
preconditioner for a sparse matrix stored using the general storage by rows
scheme. The real part of this information is returned in the array P. There is no
integer information returned for this preconditioner. Part of the array P is used
as workspace during the application of the preconditioner.

The routine DCREATE_POLY_GENR is called prior to a call to one of the
iterative solver routines with polynomial preconditioning.
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This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DCREATE_ILU_SDIA
Generate Incomplete Cholesky Preconditioner for Symmetric
Diagonal Storage

Format

DCREATE_ILU_SDIA (a, ia, ndim, nz, p, ip, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

p
real*8
On entry, a two-dimensional array with dimensions ndim by nz.
On exit, array P contains information used by the Incomplete Cholesky
preconditioner.

ip
integer*4
On entry, a one-dimensional array of length at least nz.
On exit, IP contains information for the Incomplete Cholesky preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.
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Description

DCREATE_ILU_SDIA computes the information required by the Incomplete
Cholesky preconditioner for a sparse matrix stored using the symmetric diagonal
storage scheme. The arrays P and IP contain the real and integer information,
respectively, for use by the preconditioner.

If the lower triangular part of the matrix A is stored, the decomposition is LLT ,
where L is a lower triangular matrix. If the upper triangular part is stored, the
decomposition is UT � U , where U is an upper triangular matrix.

The routine DCREATE_ILU_SDIA is called prior to a call to one of the iterative
solver routines with Incomplete Cholesky preconditioning.
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DCREATE_ILU_UDIA
Generate Incomplete LU Preconditioner for Unsymmetric Diagonal
Storage

Format

DCREATE_ILU_UDIA (a, ia, ndim, nz, plu, iplu, n)

Arguments

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

plu
real*8
On entry, a two-dimensional array with dimensions ndim by nz.
On exit, array PLU contains information used by the Incomplete LU
preconditioner.

iplu
integer*4
On entry, a one-dimensional array of length at least nz.
On exit, array IPLU contains information used by the Incomplete LU
preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.
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Description

DCREATE_ILU_UDIA computes the information required by the Incomplete LU
preconditioner for a sparse matrix stored using the unsymmetric diagonal storage
scheme. The arrays PLU and IPLU contain the real and integer information,
respectively, for use by the preconditioner.

The routine DCREATE_ILU_UDIA is called prior to a call to one of the iterative
solver routines with Incomplete LU preconditioning.
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DCREATE_ILU_GENR
Generate Incomplete LU Preconditioner for General Storage by Rows

Format

DCREATE_ILU_GENR (a, ia, ja, nz, plu, n)

Arguments

a
real*8
On entry, a one-dimensional array of length at least nz containing the nonzero
elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in arrays JA and A.
On exit, ia is unchanged.

ja
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix A.
On exit, ja is unchanged.

nz
integer*4
On entry, the number of nonzero elements in array A.
On exit, nz is unchanged.

plu
real*8
On entry, a one-dimensional array of length at least nz.
On exit, array PLU contains information used by the Incomplete LU
preconditioner.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DCREATE_ILU_GENR computes the information required by the Incomplete
LU preconditioner for a sparse matrix stored using the general storage by
rows scheme. The array PLU contains the real information for use by the
preconditioner. The integer information is identical to the information in arrays
IA and JA and is therefore not generated.

The routine DCREATE_ILU_GENR is called prior to a call to one of the iterative
solver routines with Incomplete LU preconditioning.
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DAPPLY_DIAG_ALL
Apply Diagonal Preconditioner for Any Storage Scheme
(Serial and Parallel Versions)

Format

DAPPLY_DIAG_ALL (p, x, y, n)

Arguments

p
real*8
On entry, a one-dimensional array of length at least n containing information for
use by the polynomial preconditioner.
On exit, p is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by Q�1 �x, where Q is the diagonal preconditioner.
The elements of Y are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_DIAG_ALL applies the diagonal preconditioner for a sparse matrix
stored using any one of the three storage schemes — symmetric diagonal,
unsymmetric diagonal, or general storage by rows. The input vector, p, contains
information for use by the routine. This vector is generated by a call to one of the
routines DCREATE_DIAG_SDIA, DCREATE_DIAG_UDIA or DCREATE_DIAG_
GENR prior to a call to one of the iterative solvers with diagonal preconditioning.

DAPPLY_DIAG_ALL applies the diagonal preconditioner, Q, using information
stored in the vector p, to the vector x and returns the result in vector y:

y  Q�1 � x

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DAPPLY_POLY_SDIA
Apply Polynomial Preconditioner for Symmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DAPPLY_POLY_SDIA (job, p, a, ia, ndim, nz, x, y, ndeg, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = Q�1 � x
job = 1 : y = Q�T � x

where Q is the polynomial preconditioner.
On exit, job is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3�n that contains information
for use by the polynomial preconditioner and workspace.
On exit, the part of array P that contains the information related to the
polynomial preconditioner is unchanged. The part used as workspace is
overwritten.

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.
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y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

ndeg
integer*4
On entry, the degree of the polynomial in the polynomial preconditioner.
On exit, ndeg is unchanged.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_POLY_SDIA applies the polynomial preconditioner for a sparse matrix
stored using the symmetric diagonal storage scheme. The input vector, p,
contains information for use by the routine. This vector is generated by a call to
the routine DCREATE_POLY_SDIA prior to a call to one of the iterative solvers
with polynomial preconditioning. Depending on the value of the input parameter
job, DAPPLY_POLY_SDIA operates on either the preconditioning matrix or its
transpose.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DAPPLY_POLY_UDIA
Apply Polynomial Preconditioner for Unsymmetric Diagonal Storage
(Serial and Parallel Versions)

Format

DAPPLY_POLY_UDIA (job, p, a, ia, ndim, nz, x, y, ndeg, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = Q�1 � x
job = 1 : y = Q�T � x

where Q is the polynomial preconditioner.
On exit, job is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3�n that contains information
for use by the polynomial preconditioner and workspace.
On exit, the part of array P that contains the information related to the
polynomial preconditioner is unchanged. The part used as workspace is
overwritten.

a
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing the
nonzero elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals from the main diagonal.
On exit, ia is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array A.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.
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y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

ndeg
integer*4
On entry, the degree of the polynomial in the polynomial preconditioner.
On exit, ndeg is unchanged.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_POLY_UDIA applies the polynomial preconditioner for a sparse matrix
stored using the unsymmetric diagonal storage scheme. The input vector, p,
contains information for use by the routine. This vector is generated by a call to
the routine DCREATE_POLY_UDIA prior to a call to one of the iterative solvers
with polynomial preconditioning. Depending on the value of the input parameter
job, DAPPLY_POLY_UDIA operates on either the preconditioning matrix or its
transpose.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DAPPLY_POLY_GENR
Apply Polynomial Preconditioner for General Storage by Rows
(Serial and Parallel Versions)

Format

DAPPLY_POLY_GENR (job, p, a, ia, ja, nz, x, y, ndeg, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = Q�1 � x
job = 1 : y = Q�T � x

where Q is the polynomial preconditioner.
On exit, job is unchanged.

p
real*8
On entry, a one-dimensional array of length at least 3�n that contains information
for use by the polynomial preconditioner and workspace.
On exit, the part of array P that contains the information related to the
polynomial preconditioner is unchanged. The part used as workspace is
overwritten.

a
real*8
On entry, a one-dimensional array of length at least nz containing the nonzero
elements of the matrix A.
On exit, a is unchanged.

ia
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in arrays JA and A.
On exit, ia is unchanged.

ja
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix A.
On exit, ja is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array A.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.
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y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

ndeg
integer*4
On entry, the degree of the polynomial in the polynomial preconditioner.
On exit, ndeg is unchanged.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_POLY_GENR applies the polynomial preconditioner for a sparse matrix
stored using the general storage by rows scheme. The input vector, p, contains
information for use by the routine. This vector is generated by a call to the
routine DCREATE_POLY_GENR prior to a call to one of the iterative solvers
with polynomial preconditioning. Depending on the value of the input parameter
job, DAPPLY_POLY_GENR operates on either the preconditioning matrix or its
transpose.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DAPPLY_ILU_SDIA
Apply ILU Preconditioner for Symmetric Diagonal Storage

Format

DAPPLY_ILU_SDIA (job, p, ip, ndim, nz, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed. If the lower triangular part of
the matrix A is stored, the preconditioner is of the form L�LT , where L is a lower
triangular matrix. In this case:

job = 0 : y = L�1 � x
job = 1 : y = L�T � x

If the upper triangular part of the matrix A is stored, the preconditioner is of the
form UT � U , where U is an upper triangular matrix. In this case:

job = 0 : y = U�1 � x
job = 1 : y = U�T � x

On exit, job is unchanged.

p
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing
information for use by the Incomplete Cholesky preconditioner.
On exit, p is unchanged.

ip
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals in array P from the main diagonal.
On exit, ip is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array P.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.
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y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_ILU_SDIA applies the Incomplete Cholesky preconditioner for a sparse
matrix stored using the symmetric diagonal storage scheme. The input arrays, P
and IP, contain information for use by the routine. These arrays are generated by
a call to the routine DCREATE_ILU_SDIA prior to a call to one of the iterative
solvers with Incomplete Cholesky preconditioning.

Depending on the value of the input parameter job, DAPPLY_ILU_SDIA operates
on either the matrix or its transpose. The symmetric diagonal storage scheme,
SDIA, allows either the lower or upper triangular part of the matrix to be stored.
If the lower triangular part is stored, the routine DCREATE_ILU_SDIA creates
the incomplete Cholesky preconditioner in the form L � LT , where L is a lower
triangular matrix. In this case, job = 0 implies:

y = L�1 � x

and job = 1 implies:
y = L�T � x

If the upper triangular part of the matrix A is stored, the routine DCREATE_
ILU_SDIA creates the incomplete Cholesky preconditioner in the form UT � U ,
where U is an upper triangular matrix. In this case, job = 0 implies:

y = U�1 � x

and job = 1 implies:
y = U�T � x
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DAPPLY_ILU_UDIA_L
Apply ILU Preconditioner for Unsymmetric Diagonal Storage

Format

DAPPLY_ILU_UDIA_L (job, plu, iplu, ndim, nz, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = L�1 � x
job = 1 : y = L�T � x

where the incomplete factorization is calculated as L �U . L and U are lower and
upper triangular matrices, respectively.
On exit, job is unchanged.

plu
real*8
On entry, a two-dimensional array with dimensions ndim by nz, containing
information for use by the ILU preconditioner.
On exit, plu is unchanged.

iplu
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals of PLU from the main diagonal.
On exit, iplu is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in array PLU.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.
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n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_ILU_UDIA_L applies the Incomplete LU preconditioner (lower
triangular part) for a sparse matrix stored using the unsymmetric diagonal
storage scheme. The input arrays, PLU and IPLU, contain information for use by
the routine. These arrays are generated by a call to the routine DCREATE_ILU_
UDIA prior to a call to one of the solvers with Incomplete LU preconditioning.
Depending on the value of the input parameter job, DAPPLY_ILU_UDIA_L
operates on either the matrix or its transpose.
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DAPPLY_ILU_UDIA_U
Apply ILU Preconditioner for Unsymmetric Diagonal Storage

Format

DAPPLY_ILU_UDIA_U (job, plu, iplu, ndim, nz, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = U�1 � x
job = 1 : y = U�T � x

where the incomplete factorization is calculated as L � U . L and U are lower and
upper triangular matrices respectively.
On exit, job is unchanged.

plu
real*8
On entry, a two-dimensional array with dimensions ndim by nz containing
information used by the Incomplete LU preconditioner.
On exit, plu is unchanged.

iplu
integer*4
On entry, a one-dimensional array of length at least nz, containing the distances
of the diagonals of PLU from the main diagonal.
On exit, iplu is unchanged.

ndim
integer*4
On entry, the leading dimension of array A, as declared in the calling subprogram;
ndim � n.
On exit, ndim is unchanged.

nz
integer*4
On entry, the number of diagonals stored in arrays PLU and A.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.
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n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_ILU_UDIA_U applies the Incomplete LU preconditioner (upper
triangular part) for a sparse matrix stored using the unsymmetric diagonal
storage scheme. The input arrays, PLU and IPLU, contain information for use by
the routine. These arrays are generated by a call to the routine DCREATE_ILU_
UDIA prior to a call to one of the solvers with Incomplete LU preconditioning.
Depending on the value of the input parameter job, DAPPLY_ILU_UDIA_U
operates on either the matrix or its transpose.
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DAPPLY_ILU_GENR_L
Apply Incomplete LU Preconditioner for General Storage by Rows

Format

DAPPLY_ILU_GENR_L (job, plu, iplu, jplu, nz, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = L�1 � x
job = 1 : y = L�T � x

where the incomplete factorization is calculated as L �U . L and U are lower and
upper triangular matrices, respectively.
On exit, job is unchanged.

plu
real*8
On entry, a one-dimensional array of length at least nz containing information
used by the Incomplete LU preconditioner.
On exit, plu is unchanged.

iplu
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in array PLU and JPLU. IPLU is identical to the array IA
used in the storage of the matrix A.
On exit, iplu is unchanged.

jplu
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix PLU , stored using the general
storage by rows scheme. JPLU is identical to the array JA used in the storage of
the matrix A.
On exit, jplu is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array PLU.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
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On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_ILU_GENR_L applies the Incomplete LU preconditioner (lower
triangular part) for a sparse matrix stored using the general storage by rows
scheme. The input arrays, PLU, IPLU and JPLU, contain information for use
by the routine. These arrays are generated by a call to the routine DCREATE_
ILU_GENR prior to a call to one of the iterative solvers with Incomplete LU
preconditioning. The information in the arrays IPLU and JPLU is identical to the
information in the arrays IA and JA. Therefore, routine DCREATE_ILU_GENR
does not generate these arrays.

Depending on the value of the input parameter job, DAPPLY_ILU_GENR_L
operates on either the matrix or its transpose.
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DAPPLY_ILU_GENR_U
Apply Incomplete LU Preconditioner for General Storage by Rows

Format

DAPPLY_ILU_GENR_U (job, plu, iplu, jplu, nz, x, y, n)

Arguments

job
integer*4
On entry, defines the operation to be performed:

job = 0 : y = U�1 � x
job = 1 : y = U�T � x

where the incomplete factorization is calculated as L � U . L and U are lower and
upper triangular matrices, respectively.
On exit, job is unchanged.

plu
real*8
On entry, a one-dimensional array of length at least nz containing information
used by the Incomplete LU preconditioner.
On exit, plu is unchanged.

iplu
integer*4
On entry, a one-dimensional array of length at least n+ 1, containing the starting
indices of each row in array PLU and JPLU. IPLU is identical to the array IA
used in the storage of the matrix A.
On exit, iplu is unchanged.

jplu
integer*4
On entry, a one-dimensional array of length at least nz, containing the column
values of each nonzero element of the matrix PLU , stored using the general
storage by rows scheme. JPLU is identical to the array JA used in the storage of
the matrix A in the general storage by rows scheme.
On exit, jplu is unchanged.

nz
integer*4
On entry, the number of nonzero elements stored in array PLU.
On exit, nz is unchanged.

x
real*8
On entry, a one-dimensional array of length at least n, containing the elements of
vector x, accessed with unit increment.
On exit, x is unchanged.

y
real*8
On entry, a one-dimensional array of length at least n.
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On exit, array Y is overwritten by the output vector y. The elements of array Y
are accessed with unit increment.

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

Description

DAPPLY_ILU_GENR_U applies the Incomplete LU preconditioner (upper
triangular part) for a sparse matrix stored using the general storage by rows
scheme. The input arrays, PLU, IPLU and JPLU, contain information for use
by the routine. These arrays are generated by a call to the routine DCREATE_
ILU_GENR prior to a call to one of the iterative solvers with Incomplete LU
preconditioning. The information in the arrays IPLU and JPLU is identical to
the information in the arrays IA and JA. Therefore, the routine DCREATE_ILU_
GENR does not generate these arrays.

Depending on the value of the input parameter job, DAPPLY_ILU_GENR_U
operates on either the matrix or its transpose.
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13
Using the Direct Solvers for Sparse Linear

Systems

DXML provides subprograms for the direct solution of sparse linear systems of
equations. At present, the direct solvers are provided only for matrices stored
using the skyline storage scheme.

This chapter provides information on the following topics:

• Introduction to linear system solvers (Section 13.1)

• Introduction to direct solvers (Section 13.2)

• Introduction to the skyline solver (Section 13.3)

• Storage schemes for sparse matrices stored in the skyline storage format —
symmetric matrices and unsymmetric matrices (Section 13.4)

• Functionality provided by the skyline solvers (Section 13.5)

• Naming conventions (Section 13.6) and summary of the skyline solver
subprograms (Section 13.7)

• Error handling for the skyline solvers (Section 13.8)

• Suggestions on the use of the skyline solvers (Section 13.9)

• A look at some skyline solvers (Section 13.10)

Descriptions of the sparse direct solver subprograms appear at the end of this
chapter.

Two key skyline solver subprograms, DSSKYF and DUSKYF, have been
parallelized for improved peformance on multiprocessor systems. For information
about using the parallel library, see Chapter 4.

13.1 Introduction
Many applications in science and engineering require the solution of linear
systems of equations as follows:

Ax = b (13–1)

In this equation, A is an n by n matrix and x and b are vectors of length n.

Often, these systems occur in the innermost loop of the application, and for good
overall performance of the application, it is essential that the linear system solver
be efficient. Depending on the application, the system may be solved either once,
or many times with different right sides.
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The linear systems of equations that arise from science and engineering
applications are usually sparse; that is, the coefficient matrix A has a large
number of zero elements. You can realize substantial savings in compute time
and memory requirements by storing and operating on only the nonzero elements
of A. Solution techniques that exploit this sparsity of the matrix A are referred
to as sparse solvers.

Methods for the solution of linear systems of equations can be classified into two
categories:

• Iterative Methods

These methods start with an initial guess to the solution, and proceed
to calculate solution vectors that approach the exact solution with each
iteration. The process is stopped when a given convergence criterion is
satisfied. The number of iteration steps required for convergence varies with
the coefficient matrix, the initial guess and the convergence criterion — thus,
an apriori estimate of the number of operations is not possible.

See Chapter 12 for details about iterative methods.

• Direct Methods

These methods first factor the coefficient matrix A into its triangular factors
and then perform a forward and backward solve with the triangular factors
to get the required solution. The solution is obtained in a finite number of
operations, usually known apriori, and is guaranteed to be as accurate as the
problem definition.

13.2 Describing the Direct Method
In a direct method, the matrix A is factored as follows:

A = LDU (13–2)

In this equation, L is a unit lower triangular matrix, D is a diagonal matrix, and
U is a unit upper triangular matrix. The system (13–1) is then solved for x by
solving the following systems in order:

Lz = b

Dv = z

and:
Ux = v

In the previous equations, z and v are vectors of length n. In the case of a
symmetric matrix A, the triangular factorization (13–2) has the following form:

A = UTDU (13–3)

The solution is obtained by solving for z, v and x as follows:

UT z = b

Dv = z

and:
Ux = v
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The process of triangular factorization of the matrix A introduces numerical
errors due to roundoff or truncation. This can result in the growth of errors as
the algorithm progresses. Unless excessive growth in these errors is checked, the
accuracy of the solution may be seriously impaired, even resulting in a complete
loss of significance. It is possible to minimize this growth by suitably scaling
the original matrix A and by choosing large pivot elements in the course of the
factorization. An appropriate choice of the pivot may require the interchange of
the rows and columns of the matrix. This is acheived via the use of permutation
matrices P and Q such that instead of solving the system (13–2), the following
equivalent system is solved:

(PAQ)(QT x) = Pb

If A is a symmetric matrix, the equivalent system solved is as follows:

(PAPT )(Px) = Pb

The matrices P and Q are obtained during the factorization process and are
dependent on the numerical values of the elements of the matrix A.

In the case of a sparse matrix A, the triangular factorization (13–2) or (13–3) can
give rise to L and U factors that are not sparse. The additional nonzero entries
in the matrices L and U , in positions where the corresponding entry of the matrix
A is zero, are referred to as fill-in.

As fill-in increases both the memory requirements as well as the compute
time, it should be minimized. This can be achieved again by the use of
permutation matrices that reorder the variables such that the factors L and
U are appropriately sparse.

It is sometimes possible to perform this reordering based on the nonzero
structure of the matrix, without explicit knowledge of the values of the nonzero
elements. Therefore, ordering for preservation of sparsity can be done prior to
the factorization of the matrix. Depending on the data structures used for storing
the matrix, the reordering of the variables can be chosen to minimize specific
attributes such as the fill-in, the profile of the matrix, the bandwidth of the
matrix and so forth.

Thus, the permutation matrices P and Q are chosen to achieve either one,
preferably both, of the following goals:

• Numerical stability and accuracy of the solution procedure

• Preservation of the sparsity of the original matrix A

Orderings that preserve the sparsity also provide an improvement in the accuracy
of the solution by minimizing the number of operations performed on each
element.

There are different versions of direct methods depending on the way the sparse
matrix is stored and sparsity is exploited. These storage schemes are often
reflective of the applications that give rise to the matrices. DXML currently
provides solvers for matrices stored using the envelope or skyline data structure.

Further details about direct solvers can be found in George and Liu 1981,
Pissanetzky 1984, and Duff, Erisman, and Reid, 1986.
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13.3 Skyline Solvers
Skyline solvers [Jennings 1966, Felippa 1975] are also referred to as variable
band, profile, or envelope solvers. They exploit the sparsity of the matrix by
making use of the property that zero elements situated before the first nonzero
element in any row or column always remain zero during the factorization,
assuming no row or column interchanges are included for numerical stability.

Thus, only the elements to the right of the first nonzero element in a row and
below the first nonzero element in a column need to be stored. Zero elements
within this variable band are also stored explicitly as this part of the matrix
usually fills in totally during factorization. As a result, it is possible to use
a static data structure during the factorization and the solution of the linear
system.

Skyline, or profile matrices, are a special case of banded matrices where the
nonzero structure is exploited further by considering each row or column to have
a variable bandwidth. For example, consider the symmetric matrix A with a
lower triangular part: 2

6664
a11
a21 a22
0 0 a22
0 a42 0 a44
0 a52 0 0 a55

3
7775 (13–4)

Let fi(A) denote the column number of the first nonzero element in row i, as in
the following:

fi(A) = minfj jaij 6=0g

The bandwidth of the row i is then defined as follows:

�i(A) = i� fi(A)

Thus, the following exists:

f4(A) = 2 and �4(A) = 2

Skyline solvers take advantage of the variation in �4(A) across the rows and store
only the profile or the envelope of A, Env(A), as follows:

Env(A) = f(i; j)jfi(A)�j�ig

Thus, in addition to the diagonal elements, the lower triangular part of A
requires the storage of elements in locations (2,1), (4,2), (4,3), (5,2), (5,3) and (5,4).

These are essentially the elements in each row, starting with the first nonzero
element and moving right to the diagonal element. Any zero elements in a row,
between the first nonzero element and the diagonal, are stored explicitly. These
elements (including the diagonal) define the width of the row.

In the case of a nonsymmetric matrix, the elements from the first nonzero
entry in a column to the diagonal entry are also stored. This includes any zero
elements in the column, between the first nonzero element and the diagonal.
These elements (including the diagonal) define the height of the column. The
number of elements within the envelope of A is called the profile or the envelope
size.
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13.4 Storage of Skyline Matrices
DXML provides skyline solvers for both symmetric and nonsymmetric matrices.
In each case, the matrix can be stored in one of the following two storage modes:

• Profile-in storage mode

• Diagonal-out storage mode

Both modes have identical storage requirements and in addition to the elements
in the envelope, also store pointers to the diagonal elements. Additionally, DXML
provides a profile-in storage mode for matrices that are structurally symmetric,
but numerically unsymmetric.

13.4.1 Symmetric Matrices
Symmetric matrices are stored in a skyline storage scheme using either the
profile-in or the diagonal-out mode. The elements in a row (or column) of the
lower (or upper) triangular part of the matrix are stored contiguously, starting
either from the profile and moving towards the diagonal (profile-in mode) or
starting from the diagonal and moving outward to the profile (diagonal-out mode).

13.4.1.1 Profile-in Storage Mode
The profile-in storage scheme stores the symmetric matrix A in two arrays, as
follows:

A =

2
6664
a11 a12
a12 a22 a24 a25

a33 0 0
a24 0 a44 0
a25 0 0 a55

3
7775 (13–5)

The two arrays are a real array AU that contains the variable banded columns of
the upper triangular part of A and an integer array IAUDIAG that contains the
pointers to the diagonal elements in the array AU.

As the scheme is a profile-in scheme, the elements in a column of the upper
triangular part are stored starting from the first nonzero element in the column
and moving down to the diagonal element. The data for each column are stored
in consecutive locations, the columns are stored in order and there is no space
between the columns.

As A is a symmetric matrix, this can also be interpreted as storing the elements
of the lower triangular part starting with the first nonzero element in a row and
moving across to the diagonal element. Thus, the matrix in (13–5) is stored in
the following arrays:

AU = (a11; a12; a22; a33; a24; 0; a44; a25; 0; 0; a55)

and:
IAUDIAG = (1; 3; 4; 7; 11)

IAUDIAG is of length at least n, where n is the order of the matrix A and AU is
of length at least nau, where nau is the envelope size of the symmetric part of A.
Thus, for aij2Env(A), the following exists:

ajj = AU(IAUDIAG(j)) for 1 � j �n
aij = AU(IAUDIAG(j)� j + i) for i < j

and:
nau = 11

If all the elements in the column to be stored are zero, then the diagonal element
having a value of zero is stored for that column.
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13.4.1.2 Diagonal-out Storage Mode
The elements of the upper triangular part of the symmetric matrix A in (13–5)
can also be stored by columns in order, starting with the diagonal element and
moving up the column to the first nonzero element in the column.

Alternatively, the lower triangular part of the matrix can be considered as being
stored by rows in order, with each row stored starting from the diagonal element
and moving left to the first nonzero element in the row. The data for each column
are stored in consecutive locations, the columns are stored in order and there is
no space between columns. Thus, the matrix in (13–5) is stored as:

AU = (a11; a22; a12; a33; a44; 0; a24; a55; 0; 0; a25)

and:
IAUDIAG = (1; 2; 4; 5; 8; 12)

Array AU is of length at least nau, where nau is the envelope size of the
symmetric part of A. Array IAUDIAG is of length at least n+ 1, where the
(n + 1)-st element is the pointer to the location, in AU, of the diagonal entry of
row n + 1, if there had been such a row. This allows the determination of the
location of the first nonzero entry in the n-th column of A. Thus, for aij2Env(A),
the following exists:

ajj = AU(IAUDIAG(j)) for 1 � j �n

aij = AU(IAUDIAG(j) + j � i) for i < j

and:
nau = 11

If all the elements in the column to be stored are zero, then the diagonal element
having a value of zero is stored for that column.

13.4.2 Unsymmetric Matrices
Unsymmetric matrices are stored in a skyline storage scheme using either the
profile-in or the diagonal-out mode. The elements in a row (and column) of the
lower (and upper) triangular part of the matrix are stored contiguously, starting
either from the profile and moving towards the diagonal (profile-in mode) or
starting from the diagonal and moving outward to the profile (diagonal-out mode).
The lower and upper triangular parts are stored in separate arrays, with the
diagonal stored in the upper triangular part.

DXML also provides a special storage scheme for matrices that are structurally
symmetric, but numerically unsymmetric. Such matrices can also be stored using
the general scheme, but at a cost of higher memory requirements.
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13.4.2.1 Profile-in Storage Mode
The profile-in storage scheme stores the unsymmetric matrix A in four arrays, as
follows:

A =

2
6664
a11
a21 a22 a23 a25

a33 a34 0
a42 0 a44 0
a52 0 0 a55

3
7775 (13–6)

The two real arrays AU and AL contain the columns of the upper triangular part
and rows of the lower triangular part of A, respectively. The two integer arrays
IAUDIAG and IALDIAG contain the pointers to the diagonal elements in the
arrays AU and AL, respectively.

As the scheme is a profile-in scheme, the elements in a column of the upper
triangular part are stored starting from the first nonzero element in the column
and moving down to the diagonal element. Similarly, the elements in a row of the
lower triangular part are stored starting with the first nonzero element in a row
and moving across to the diagonal element. The data for each row and column
are stored consecutively, the rows and columns are stored in order, and there is
no space between successive rows or columns.

The diagonal of A is stored along with the upper triangular part in the array AU.
The array AL also has storage for the diagonal elements, but these locations are
not accessed and they can be used to store other information. Thus, the matrix A
is stored as follows:

AU = (a11; a22; a23; a33; a34; a44; a25; 0; 0; a55)

AL = (?; a21; ?; ?; a42; 0; ?; a52; 0; 0; ?)

IAUDIAG = (1; 2; 4; 6; 10)

and:
IALDIAG = (1; 3; 4; 7; 11)

The diagonal elements in AL are indicated by * — the elements in the array
IALDIAG are pointers to these locations. IAUDIAG and IALDIAG are of length
at least n, where n is the order of the matrix A and AU and AL are of lengths
at least nau and nal, respectively, where nau is the envelope size of the upper
triangular part of A (including the diagonal) and nal is the envelope size of the
lower triangular part of A (including the diagonal). Thus, for aij2Env(A), the
following exists:

ajj = AU(IAUDIAG(j)) for 1�j�n
aij = AU(IAUDIAG(j)� j + i) for i < j

aij = AL(IALDIAG(i)� i+ j) for i > j

nau = 10 and nal = 11

Note

The envelope size of the matrix A is (nal + nau � n) as the diagonal
elements are counted both in nal and nau. If all the elements in the row
or column to be stored are zero, then the diagonal element having a value
of zero is stored for that row or column.
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13.4.2.2 Diagonal-out Storage Mode
The diagonal-out storage scheme stores the unsymmetric matrix A in (13–6) in
four arrays — two real arrays AU and AL containing the columns of the upper
triangular part and the rows of the lower triangular part of A respectively, and
two integer arrays IAUDIAG and IALDIAG ontaining the pointers to the diagonal
elements in the arrays AU and AL, respectively.

As the scheme is a diagonal-out scheme, the elements in a column of the upper
triangular part are stored starting with the diagonal element and moving up the
column to the first nonzero element in the column.

Similarly, the elements in a row of the lower triangular part are stored starting
from the diagonal element and moving outward to the first nonzero element in
the row. The data for each row and column are stored consecutively, the rows and
columns are stored in order, and there is no space between successive rows and
columns.

The diagonal of A is stored along with the upper triangular part in the array AU.
The array AL also has storage for the diagonal elements, but these locations are
not accessed and they can be used to store other information. Thus, the matrix A,
in (13–6), is stored as follows:

AU = (a11; a22; a33; a23; a44; a34; a55; 0; 0; a25)

AL = (?; ?; a21; ?; ?; 0; a42; ?; 0; 0; a52))

IAUDIAG = (1; 2; 3; 5; 7; 11)

and:
IALDIAG = (1; 2; 4; 5; 8; 12)

The diagonal elements in AL are indicated by ? and the elements in the array
IALDIAG are pointers to these locations. IAUDIAG and IALDIAG are of length
at least n+ 1, where n is the order of the matrix A.

The n + 1-st element is the pointer to the location, in AU and AL, of the diagonal
entry of row n+ 1, if there had been such a row. This allows the determination of
the location of the first nonzero entry in the n-th row and column of A. AU and
AL are of lengths at least nau and nal, respectively, where nau is the envelope
size of the upper triangular part of A (including the diagonal) and nal is the
envelope size of the lower triangular part of A (including the diagonal). Thus, for
aij2Env(A), the following exists:

ajj = AU(IAUDIAG(j)) for 1�j�n

aij = AU(IAUDIAG(j) + j � i) for i < j

aij = AL(IALDIAG(i) + i� j) for i > j

nau = 10 and nal = 11

Note

The envelope size of the matrix A is nal+nau�n as the diagonal elements
are counted both in nal and nau. If all the elements in the row or column
to be stored are zero, then the diagonal element having a value of zero is
stored for that row or column.
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13.4.2.3 Structurally Symmetric Profile-In Storage Mode
Unsymmetric matrices with structural symmetry can be stored using only
one array for both the upper and lower triangular parts. The elements of the
strict lower triangular part are stored first in a profile-in mode, followed by the
elements of the strict upper triangular part, also in profile-in mode and finally
the diagonal element.

As the matrix is structurally symmetric, it is possible to determine the start of
each column, given a pointer to the diagonal entries. Thus the matrixA:

A =

2
6664
a11 a12
a21 a22 a24 a25

a33 0 0
a42 0 a44 0
a52 0 0 a55

3
7775 (13–7)

is stored using the real array AU and the integer array: IAUDIAG as

AU = (a11; a21; a12; a22; a33; a42; 0; a24; 0; a44; a52; 0; 0; a25; 0; 0; a55)

and:
IAUDIAG = (1; 4; 5; 10; 17)

IAUDIAG is of length at least n and AU is of length at least nau, where nau is
the profile of the matrix A. The arrays AL and IALDIAG are not used. Thus, for
aij2Env(A), the following exists:

ajj = AU(IAUDIAG(j)) for 1�j�n

aij = AU(IAUDIAG(j)� j + i) for i < j

aij = AU

�
IAUDIAG(i) + IAUDIAG(i� 1) + 1

2
� i+ j

�
for i > j

and:
nau = 17

If all the elements in the row or column to be stored are zero, then the diagonal
element having a value of zero is stored for that row or column.

13.5 DXML Skyline Solvers
DXML includes routines to solve systems of equations:

AX = B

or:
ATX = B

where the matrix A is stored using the skyline storage scheme. A can be either
a symmetric or an unsymmetric matrix. If A is a symmetric matrix, then it can
be stored using either the profile-in or the diagonal-out storage mode. If A is
unsymmetric, then it can be stored using either the profile-in storage mode, the
diagonal-out storage mode, or the structurally symmetric, profile-in storage mode.
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The skyline solvers in DXML include routines for both the LDU (or the UTDU )
factorization as well as the forward and back solves. As the routines for these two
operations are separate, it allows the factorization to be evaluated once, followed
by repeated use of the solve routine to obtain the solution for different right sides.
The solve routines can also be called with multiple right sides. The factorize and
solve routines must be called with the same storage scheme.

In addition to the LDU (or UTDU ) factorization and the triangular solve routines
for the symmetric and unsymmetric matrices stored using the skyline storage
scheme, DXML also provides the following functionality:

• Evaluation of the determinant

The factorization routines include an option for the evaluation of the
determinant of the matrix A. In order to prevent overflow or underflow, the
determinant is returned in two parts, det_base and det_pwr, with the value of
the determinant given as:

det_base ? 10det_pwr

where:

1:0� det_base < 10.0

• Evaluation of the inertia

The inertia of the symmetric matrix A is the triplet of integers
ipeigen; ineigen; izeigen, consisting of the number of positive, negative
and zero eigenvalues, respectively.

The factorization routines allow the option of evaluating the inertia of the
symmetric matrix A. In addition to the number of positive and negative
eigenvalues, the routine returns an indication of the existence, or otherwise,
of at least one zero eigenvalue.

• Partial factorization

The factorization routines also allow a partial factorization of A, starting from
row and column ibeg+1 where ibeg > 0. The factorization of rows and columns
1 through ibeg is assumed to have been already obtained by a previous call to
the routine.

• Pivoting

No pivoting is done during the factorization process to ensure numerical
stability. However, if a small pivot (in absolute value) is encountered, an
option is provided to either stop the factorization, continue the factorization,
or continue after setting the pivot equal to a predetermined value. The
location of the first occurrence of a small pivot and its value are returned on
exit from the factorization routine.

Due to the lack of pivoting for numerical stability, caution is urged when
using the skyline solvers for the solution of systems that are not positive (or
negative) definite or diagonally dominant.

• Statistics on the matrix

DXML provides the option to collect and print the statistics on the skyline
matrix. By appropriately selecting the input parameters, the following
information can be obtained from the factorization routines:

The envelope size of the matrix

The number of zeros in the envelope at the start of the factorization
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The percentage of the envelope that was sparse at the start of the
factorization

The maximum height of a column

The average height of a column

The root-mean-square height of a column

The maximum width of a row (unsymmetric matrices only)

The average width of a row (unsymmetric matrices only)

The root-mean-square width of a row (unsymmetric matrices only)

These statistics also include the determinant of the matrix A, if evaluated,
and in the case of symmetric matrices, the inertia of the matrix, if evaluated.

• Evaluation of matrix norms

DXML provides routines for the evaluation of the various norms of the matrix
A as well as an estimate of the reciprocal of the condition number of A. By
appropriately setting an input parameter, the following quantities can be
evaluated:

1-norm of (A):
jjAjj1 = max

j

X
i

jaij j

1-norm of (A):
jjAjj1 = max

i

X
j

jaij j

Frobenius-norm of (A):

jjAjjF =

sX
i

X
j

jaij j2

Largest absolute value of (A):

max
i;j
jaij j

Note

The 1-norm of A is the 1-norm of AT and the last quantity above is not a
matrix norm.

• Condition number estimator

The condition number estimator included in DXML for matrices stored in the
skyline storage format is based on the LAPACK routine DLACON [Anderson
et.al. 1992], which estimates the 1-norm of a square, real matrix. The DXML
routine returns the reciprocal of the condition number of A as:

rcond(A) =
1

jjAjj�jjA�1jj
where either the 1-norm or the 1-norm is used. The norm of A is evaluated
by an appropriate call to the routine that evaluates the various norms, and
the estimate of the norm of A�1 is evaluated using the routine DLACON.
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• Iterative refinement, error bounds, and backward error estimates

DXML provides routines to improve the computed solution via iterative
refinement. This is done by obtaining the residual, r, corresponding to the
calculated solution x̂, and updating it to get a better solution vector xnew as
follows:

r = b� Ax̂

�x = A�1r

and:
xnew = x̂+ �x

In the case of an unsymmetric matrix, if the system being solved is:

AT x = b

the updated solution vector is obtained as:

r = b� AT x̂

�x = A�T r

and:
xnew = x̂+ �x

Therefore, both the original matrix A as well as the LDU (or UTDU )
factorization are required, in addition to the right hand side, b, and the
calculated solution x. The iterative refinement routines evaluate all
quantities in the same precision as the rest of the computation, that is,
no extended precision is used [Skeel 1980].

Additionally, the iterative refinement routines provide the component-wise
relative backward error and the estimated forward error bound for each
solution vector [Demmel et. al. 1988, Arioli, Demmel and Duff 1989,
Anderson et. al. 1992]. These quantities can be used to provide an indication
of the quality of the solution. The component-wise relative backward error,
berr, of each solution vector is the smallest relative change in any entry
of A or b that makes x̂ an exact solution. The estimated forward error,
ferr, bounds the magnitude of the largest entry in x̂ � xtrue divided by the
magnitude of the largest entry in x̂, where xtrue is the true solution and x̂, the
calculated solution.

The criterion for stopping iterative refinement is based on the discussion in
[Arioli, Demmel, Duff 1989]. Iterations are continued as long as all of the
following conditions are satisfied:

The number of iterations of the iterative refinement process is less than
the maximum allowed.

berr reduces by at least a factor of 2 during the previous iteration.

berr is larger than the machine precision, � (the greatest positive number
such that the floating point representation of 1 + � equals 1).
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• Driver routines

DXML provides two types of driver routines for the solution of linear systems
with the matrix stored in the skyline storage scheme:

A simple driver, which factorizes the matrix A and solves the system:

AX = B

or:
ATX = B

with the solution x overwriting the right hand side and the factorization
overwriting the matrix A.

An expert driver that can also perform condition number estimation, a
check for singularity, iterative refinement of the solution and computation
of the component-wise relative backward error and the estimated forward
error bound for the solution vector.

Both drivers are provided for symmetric and unsymmetric matrices and allow
a choice of storage modes for the skyline matrix. The expert driver has higher
memory requirements than the simple driver. It also allows the matrix to be
input in either the factored or the unfactored form and provides more options
in the factorization phase.

13.6 Naming Conventions for Direct Solver Subprograms
Table 13–1 shows the character groups and the character mnemonics and their
meaning for each skyline solver routine name.

Table 13–1 Naming Conventions for Direct Solver Subprograms

Character Group Mnemonic Meaning

First group D Double-precision real data

Second group S Symmetric matrix

U Unsymmetric matrix

Third group SKY Matrix stored in skyline storage scheme

Fourth Group N Evaluate matrix norms

F Factorize

S Solve

C Estimate condition number

R Perform iterative refinement

D Simple driver

X Expert driver

Thus, the routine DUSKYF obtains the LDU factorization for an unsymmetric
matrix consisting of real double-precision data stored in the skyline storage mode.
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13.7 Summary of Skyline Solver Subprograms
Table 13–2 summarizes the skyline solver subprograms.

Table 13–2 Summary of Direct Solver Subprograms

Subprogram
Name Meaning

DSSKYN Obtains, in double-precision arithmetic, the 1-norm, the1-norm,
the Frobenius norm, or the maximum absolute value of a symmetric
matrix stored in either the profile-in or the diagonal-out skyline
storage mode.

DSSKYF Obtains, in double-precision arithmetic, the UT
DU factorization of a

symmetric matrix stored in either the profile-in or the diagonal-out
skyline storage mode.

DSSKYS Obtains, in double-precision arithmetic, the solution to the system
AX = B, where A has been factored using the routine DSSKYF.

DSSKYC Obtains, in double-precision arithmetic, the reciprocal of the estimate
of the condition number of a symmetric matrix stored in either the
profile-in or the diagonal-out skyline storage mode.

DSSKYR Obtains, in double-precision arithmetic, an improvement to the
solution via iterative refinement, the component-wise relative
backward error and the estimated forward error bounds for the
solution vector. The symmetric matrix is stored in either the profile-in
or the diagonal-out skyline storage mode.

DSSKYD Obtains, in double-precision arithmetic, the U
T
DU factorization

of the matrix A, followed by the solution of the system AX = B,
where the symmetric matrix A is stored in either the profile-in or the
diagonal-out skyline storage mode.

DSSKYX Obtains, in double-precision arithmetic, the U
T
DU factorization and

the condition number estimate of the matrix A. If the matrix is non-
singular, the solution of the system AX = B is obtained, followed
by iterative refinement and the calculation of the component-wise
relative backward error and the estimated forward error bounds for
the solution vector. The symmetric matrix A is stored in either the
profile-in or the diagonal-out skyline storage mode.

DUSKYN Obtains, in double-precision arithmetic, the 1-norm, the 1-norm, the
Frobenius norm or the maximum absolute value of an unsymmetric
matrix stored in either the profile-in, the diagonal-out or the
structurally symmetric profile-in skyline storage mode.

DUSKYF Obtains, in double-precision arithmetic, the LDU factorization of an
unsymmetric matrix stored in either the profile-in, the diagonal-out
or the structurally symmetric profile-in skyline storage mode.

DUSKYS Obtains, in double-precision arithmetic, the solution to the system
AX = B or A

T
X = B, where A has been factored using the routine

DUSKYF.

DUSKYC Obtains, in double-precision arithmetic, the reciprocal of the estimate
of the condition number of an unsymmetric matrix stored in either
the profile-in, the diagonal-out or the structurally symmetric profile-
in skyline storage mode. Either the 1-norm or the 1-norm can be
used.

(continued on next page)
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Table 13–2 (Cont.) Summary of Direct Solver Subprograms

Subprogram
Name Meaning

DUSKYR Obtains, in double-precision arithmetic, an improvement to the
solution via iterative refinement, the component-wise relative
backward error and the estimated forward error bounds for the
solution vector. The unsymmetric matrix is stored in either the
profile-in, the diagonal-out or the structurally symmetric profile-in
skyline storage mode.

DUSKYD Obtains, in double-precision arithmetic, the LDU factorization of
the matrix A, followed by the solution of the system AX = B or
A
T
X = B, where the unsymmetric matrix A is stored in either the

profile-in, the diagonal-out or the structurally symmetric profile-in
skyline storage mode.

DUSKYX Obtains, in double-precision arithmetic, the LDU factorization and
the condition number estimate of the matrix A. If the matrix is
non-singular, the solution of the system AX = B or A

T
X = B is

obtained, followed by iterative refinement and the calculation of the
component-wise relative backward error and the estimated forward
error bounds for the solution vector. The unsymmetric matrix A is
stored in either the profile-in, the diagonal-out or the structurally
symmetric profile-in skyline storage mode.

13.8 Error Handling
Errors during the execution of one of the skyline solver routines are indicated
by an appropriate value of the error flag, ierror. The routine sets the error
flag, prints out any error message and returns control to the calling program.
It is your responsibility to ensure that the routines completed successfully, as
indicated by ierror = 0.

Table 13–3 provides a list of the error flags and their meaning.

Negative values indicate a fatal error such as invalid input data, while positive
values indicate a warning, such as a small pivot during factorization.

The error flags in the -2000 range are the result of invalid input data and those
in the -3000 range are caused by an error during computation such as a small
pivot causing the factorization process to stop.

Table 13–3 Error Flags for Direct Solver Subprograms

Error Flag Meaning

-2001 Value of n is invalid

-2002 Value of nau is invalid

-2003 Value of nal is invalid

-2004 Value of niparam is invalid

-2005 Value of nrparam is invalid

-2006 Value of niwrk is invalid

-2007 Value of nrwrk is invalid

(continued on next page)
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Table 13–3 (Cont.) Error Flags for Direct Solver Subprograms

Error Flag Meaning

-2008 Value of iolevel is invalid

-2009 Value of idefault is invalid

-2010 Value of istore is invalid

-2011 Value of inorm is invalid

-2012 Value of ibeg is invalid

-2013 Value of idet is invalid

-2014 Value of ipvt is invalid

-2015 Value of inertia is invalid

-2016 Value of pvt_sml is invalid

-2017 Value of pvt_new is invalid

-2018 Value of ldb or ldbx is invalid

-2019 Value of nbx is invalid

-2020 Value of itrans is invalid

-2021 Value of anorm is invalid

-2022 Value of itmax is invalid

-2023 Value of ldx is invalid

-2024 Value of ifactor is invalid

-3001 Small pivot encountered; factorization stopped

-3002 Matrix singular to working precision

3001 Small pivot encountered; factorization continued

3002 Small pivot encountered; factorization continued after pivot
replacement

-4001 Memory allocation routine in the parallel version failed

To recover from errors in the -2000 range, the invalid argument should be set
to an appropriate value and the routine called again. Errors in the -3000 range
indicate that the solution procedure used might not be applicable to the problem
under consideration. An alternative solution procedure is recommended.

The parallel version of the factorization routines require a small amount of
additional memory for temporary variables. This memory allocation is not
expected to fail under normal conditions. However, if an error flag with value
-4001 is returned, you can either increase allocated values of pagefile quota and
virtual memory, or reduce the number of processors used, or use the serial version
of the routine.

The amount of information printed as a result of an error can be controlled by
setting the variable iolevel to an appropriate value. By a suitable choice of iounit,
all information printed can be suppressed.
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13.9 Suggestions on the Use of the Skyline Solvers
The skyline solvers included in DXML provide routines for the factorization
and the solution of matrices stored in the skyline storage format. Additional
functionality includes the evaluation of matrix norms, condition number
estimation, iterative refinement, component-wise backward error, and estimated
forward error bounds.

These routines are provided for both symmetric and unsymmetric matrices.
The symmetric matrix can be stored in either the profile-in or the diagonal-out
storage mode. The unsymmetric matrix can be stored in either the profile-in, the
diagonal-out, or the structurally symmetric profile-in storage modes.

The following steps are suggested in the use of the skyline solvers. Further
details are provided in the description of each routine.

• Select a storage scheme for the matrix.

Once the matrix is stored using a particular storage scheme, the same storage
scheme must be used in all the skyline routines that operate on the matrix.

• Select the order in which the routines are called.

The simple and expert driver routines provide most of the functionality that
is included in the DXML’s skyline solvers via a simple call to a single routine.
If the functionality provided by one of these routines is what is required by
your application, then the driver routines are recommended. If not, then you
need to call the required routines in the appropriate order. It is also possible
to mix the two approaches and follow a driver routine by one of the other
skyline routines or vice-versa. For example, the expert driver routines do
not allow partial factorization. If this functionality is required, then a call to
the factorization routine can be followed by a call to the expert driver, with
the fully factored matrix as input. Care must be taken to ensure that data
that must not change between calls to successive skyline routines, remains
unchanged.

The factorization routine for the skyline matrices overwrites the original
matrix A with the LDU (or UTDU ) factors. As a result, routines that require
the original matrix as an input must be called prior to the factorization
routine, or a copy of the matrix made before the call to the factorization
routine. For example, the evaluation of the norms requires the original
matrix A. Also the condition number estimator requires both the 1-norm or
the 1-norm of A as well as its LDU (or UTDU ) factors. In this case, the
norm evaluation routine must be called first, followed by the factorization
routine and finally the routine for the condition number estimation. This
order of routines will allow the use of only one copy of the matrix.

The iterative refinement routines require both the original matrix and the
original right sides, as well as the factored matrix and the solution vectors.
Since the solve routines overwrite the right hand sides, a copy of both the
original matrix and the right sides must be saved before a call to the factor
and solve routines, respectively.

• Set up the integer and the real parameter arrays.

The arrays IPARAM and RPARAM are used to pass integer and real
parameters, respectively, to the skyline routines. These arrays must be set up
with the appropriate values prior to a call to each routine. There is an option
to select default values for some of the parameters. If this option is chosen,
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the remaining parameters must be assigned values before the call to a skyline
routine.

Some parameters are presently unused, but included for future use. These
can be dummy parameters.

• Set up arrays for integer and real workspace.

Each skyline routine requires integer and real workspace for the computation.
The workspace arrays, IWRK and RWRK must be of sufficient length as
indicated in the description of each routine. The size of this workspace is
provided via the variables niwrk and nrwrk in the array IPARAM. Some
parts of the workspace contain information generated during the factorization
process and used in other routines. This information must remain unchanged
between the call to the factorization routine and any subsequent routines.

• Select the options in factorization.

The factorization process allows additional functionality such as the
calculation of the determinant, statistics on the matrix and so forth. These
can be useful in getting a better understanding of the properties of the matrix
under consideration. However, their use is also expensive, and hence these
options should not be used unless the information generated is important for
the problem being solved.

The factorization routines allow partial factorization, with the factorization
starting at row and column (ibeg + 1) instead of 1. In this case, the first ibeg
rows and columns are assumed to have already been factored by a previous
call to the factor routine.

No pivoting is done during the factorization process. Hence care must be
taken in cases where the matrix is not symmetric positive (negative) definite
or diagonally dominant and therefore might require pivoting to ensure a
stable factorization. Options are provided to stop the factorization process
when a small pivot is encountered, or to continue the factorization process. In
the latter case, there is an option to either use the same pivot element or use
a replacement pivot element.

• Check the value of the PARALLEL environment variable.

If you are using the parallelized version of the factorization routines, you
must set the value of the PARALLEL environment variable, even if you are
using a single processor. See Parallel Execution Environment Variable.

• Check the accuracy of the solution.

An estimate of the quality of the solution can be obtained from the iterative
refinement routine which calculates the component-wise backward error and
the estimated forward error bounds.

• Check the error flags.

The error flag ierror must be checked on exit from each call to a skyline
routine, especially if all messages from the routine have been suppressed.
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13.10 A Look at Some Skyline Solvers
To illustrate the use of the sparse skyline solvers, consider the linear system of
equations derived from the discretization of the Laplace’s equation:

�uxx � uyy = 0

on the unit square:
0�x�1

and:
0�y�1

with Dirichlet boundary conditions, using the standard five point central
differencing scheme. Assuming nx grid points in the x direction and ny grid
points in the y direction, the coefficient matrix has the following form for
nx = ny = 4 :

4 -1 | -1 | |
-1 4 -1 | -1 | |

-1 4 -1 | -1 | |
-1 4 | -1 | |

-----------|-------------|------------|-----------
-1 | 4 -1 |-1 |

-1 | -1 4 -1 | -1 |
-1 | -1 4 -1 | -1 |

-1 | -1 4 | -1 |
-----------|-------------|------------|-----------

| -1 | 4 -1 |-1
| -1 |-1 4 -1 | -1
| -1 | -1 4 -1 | -1
| -1 | -1 4 | -1

-----------|-------------|------------|-----------
| |-1 | 4 -1
| | -1 |-1 4 -1
| | -1 | -1 4 -1
| | -1 | -1 4

The elements not defined in the matrix are zero. The exact solution is assumed
to be all 1.0.

The examples in this section illustrate the use of the skyline solvers and
the various options provided. Each example is self-contained, with comments
indicating the operation being performed. The output files created by the example
programs illustrate the output that can be obtained from the skyline solvers by
setting the parameters appropriately.

These examples illustrate the use of the DXML skyline solver routines from
Fortran, C, and C++ codes. Additional examples are included online in the
/usr/examples/dxml directory.
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Example 13–1 Skyline Solver with the Simple Driver Routine (Fortran Code)

PROGRAM EXAMPLE_SKYSOL

C
C ***** TO DEMONSTRATE THE USE OF THE SPARSE SKYLINE SOLVER.
C
C ***** THIS PROGRAM ILLUSTRATES THE FOLLOWING:
C
C (1) USE OF THE SIMPLE DRIVER ROUTINE TO SOLVE THE TEST
C PROBLEM STORED AS A SYMMETRIC MATRIX IN THE PROFILE-IN
C STORAGE MODE.
C

IMPLICIT REAL*8 (A-H, O-Z)
C

PARAMETER (NMAX = 100)
PARAMETER (NMAX_SKY = 1100)

C
REAL*8 AU(NMAX_SKY), XO(NMAX), BX(NMAX), RPARAM(100),

$ DUM, TEMP
C

INTEGER IAUDIAG(NMAX), IPARAM(100), IWRK(2*NMAX),
$ I,NX, NY, NXNY, IDUM

C
C ***** SETUP OUTPUT FILE
C

IOUNIT = 7
OPEN (UNIT=IOUNIT, FILE=’OUTPUT.DATA’, STATUS=’UNKNOWN’)
REWIND IOUNIT

C
WRITE (IOUNIT, 101)

C
C ***** SET UP THE PROBLEM SIZE
C

NX = 10
NY = 10
NXNY = NX*NY
WRITE (IOUNIT, 102) NXNY

C
C ***** GENERATE THE MATRIX IN THE FIVE DIAGONAL FORM.
C

CALL GENMAT(NX, NY, NXNY)
C
C ***** GENERATE XO, THE TRUE SOLUTION
C

DO I = 1, NXNY
XO(I) = 1.0D0

END DO
C
C ***** OBTAIN THE CORRESPONDING RIGHT HAND SIDE (IN BX). THIS IS
C OVERWRITTEN BY THE SOLUTION.
C

CALL MATVEC (NX, NY, NXNY, XO, BX)
C
C ***** CONVERT THE MATRIX INTO SYMMETRIC PROFILE-IN SKYLINE STORAGE
C MODE
C

CALL CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)
C

(continued on next page)
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Example 13–1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code)

C ***** SET THE PARAMETERS (INTEGER AND REAL) FOR THE SIMPLE DRIVER
C
C IWRK = IPARAM(3) = 2*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
C IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION AND
C STATISTICS)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 1 (FOR PROFILE-IN STORAGE MODE)
C IPVT = IPARAM(9) = 0 (STOP IF ABS(PIVOT) IS SMALLER THAN
C PVT_SML)
C PVT_SML = RPARAM(1) = 1.0D-12 (STOP IF ABS(PIVOT) IS SMALLER
C THAN PVT_SML)
C

IPARAM(1) = 100
IPARAM(2) = 100
IPARAM(3) = 2*NXNY
IPARAM(4) = 0
IPARAM(5) = IOUNIT
IPARAM(6) = 2
IPARAM(7) = 1
IPARAM(8) = 1
IPARAM(9) = 0

C
RPARAM(1) = 1.0D-12

C
C ***** CALL THE SIMPLE DRIVER ROUTINE FOR FACTORIZATION AND SOLUTION,
C WITH A SINGLE RIGHT HAND SIDE. RWRK IS A DUMMY ARGUMENT.
C

LDBX = NMAX
NBX = 1
CALL DSSKYD ( NXNY, AU, IAUDIAG, NAU, BX, LDBX, NBX,

$ IPARAM, RPARAM, IWRK, DUM, IERROR )
C
C ***** CHECK THAT THE SOLUTION COMPLETED WITHOUT ERROR
C

IF (IERROR.NE.0) THEN
WRITE (IOUNIT, 103) IERROR
GO TO 999

END IF
C
C ***** FIND MAX ERROR IN SOLUTION
C

TEMP = ABS(XO(1) - BX(1))
DO I = 2, NXNY

TEMP = MAX( TEMP, ABS(XO(I) - BX(I)) )
END DO
WRITE (IOUNIT, 104) TEMP

C
999 CONTINUE

C
101 FORMAT (/,2X, ’SOLVING EXAMPLE PROBLEM WITH SYMMETRIC ’,

$ ’PROFILE-IN SKYLINE STORAGE MODE’,/)
102 FORMAT (/,2X, ’ORDER OF THE MATRIX:’,I5)
103 FORMAT (/,2X, ’ERROR IN THE SIMPLE DRIVER ROUTINE:’,I10)
104 FORMAT (/,2X, ’MAXIMUM ERROR IN SOLUTION: ’, E15.8,/)

C
STOP
END

(continued on next page)
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Example 13–1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code)

C
C
C

SUBROUTINE GENMAT (NX, NY, NXNY)
C
C ***** ROUTINE TO GENERATE THE MATRIX FOR THE EXAMPLE (IN THE FIVE
C DIAGONAL FORM). A1 AND A2 ARE THE SUBDIAGONALS, A3 IS THE MAIN
C DIAGONAL AND A4 AND A5 ARE THE SUPERDIAGONALS.
C

IMPLICIT REAL*8 (A-H,O-Z)
C

PARAMETER (NMAX = 100)
C

COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
C

DO I = 1, NXNY
A3(I) = 4.0D0
A1(I) = 0.0D0
A2(I) = 0.0D0
A4(I) = 0.0D0
A5(I) = 0.0D0

END DO
C

DO J = 1, NY
DO I = 2, NX

K = (J-1)*NX+I
A2(K) = -1.0D0

END DO
DO I = 1, NX-1

K = (J-1)*NX+I
A4(K) = -1.0D0

END DO
END DO

C
DO J = 2, NY

DO I = 1, NX
K = (J-1)*NX+I
A1(K) = -1.0D0

END DO
END DO

C
DO J = 1, NY-1

DO I = 1, NX
K = (J-1)*NX+I
A5(K) = -1.0D0

END DO
END DO

C
RETURN
END

C
C
C

SUBROUTINE MATVEC (NX, NY, NXNY, TMP1, TMP2)
C
C ***** ROUTINE TO OBTAIN THE MATRIX VECTOR MULTIPLY, USING THE MATRIX
C FROM THE FIVE-DIAGONAL FORM. TMP1 IS THE INPUT VECTOR; TMP2 IS
C THE OUTPUT VECTOR.
C

(continued on next page)
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Example 13–1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code)

IMPLICIT REAL*8 (A-H,O-Z)
C

PARAMETER (NMAX = 100)
C

REAL*8 TMP1(*), TMP2(*)
C

INTEGER NX,NY,NXNY
C

COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
C
C

DO I = 1, NXNY
TMP2(I) = A3(I)*TMP1(I)

END DO
C

DO I = 1, NXNY-1
TMP2(I) = TMP2(I) + A4(I)*TMP1(I+1)

END DO
C

DO I = 2, NXNY
TMP2(I) = TMP2(I) + A2(I)*TMP1(I-1)

END DO
C

DO I = 1, NXNY-NX
TMP2(I) = TMP2(I) + A5(I)*TMP1(I+NX)

END DO
C

DO I = NX+1, NXNY
TMP2(I) = TMP2(I) + A1(I)*TMP1(I-NX)

END DO
C

RETURN
END

C
C
C

SUBROUTINE CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)
C
C ***** ROUTINE FOR CONVERTING THE MATRIX FROM THE FIVE-DIAGONAL FORM
C TO THE SYMMETRIC PROFILE-IN SKYLINE FORM. ONLY THE UPPER
C TRIANGULAR PART IS STORED. THE MATRIX IS RETURNED IN THE REAL
C AND INTEGER ARRAYS, AU AND IAUDIAG, RESPECTIVELY.
C

IMPLICIT REAL*8 (A-H,O-Z)
C

PARAMETER (NMAX = 100)
C

REAL*8 AU(*)
C

INTEGER IAUDIAG(*), NAU, NX, NY, NXNY
C

COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
C
C

INDEX = 1
AU(INDEX) = A3(1)
IAUDIAG(1) = 1
INDEX = INDEX + 1

(continued on next page)

Using the Direct Solvers for Sparse Linear Systems 13–23
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C
DO I = 2, NX

AU(INDEX) = A4(I-1)
AU(INDEX+1) = A3(I)
IAUDIAG(I) = INDEX+1
INDEX= INDEX+2

END DO
C

DO I = NX+1, NXNY
AU(INDEX) = A5(I-NX)
INDEX = INDEX+1
DO J = 1, NX-2

AU(INDEX) = 0.0D0
INDEX = INDEX+1

END DO
AU(INDEX) = A4(I-1)
INDEX = INDEX+1
AU(INDEX) = A3(I)
IAUDIAG(I) = INDEX
INDEX = INDEX+1

END DO
C

NAU = INDEX - 1

RETURN
END

(continued on next page)
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Output from Example 1

SOLVING EXAMPLE PROBLEM WITH SYMMETRIC PROFILE-IN SKYLINE STORAGE
MODE ORDER OF THE MATRIX: 100
-----------------------------------------------------------------
simple driver for a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100
------------------------------------------------------------------
u^ t-d-u factorization on a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100
factorization starts at row/column: 1
size of the envelope (upper triangle): 1009
number of initial zeros in the envelope: 729
percentage sparsity of the envelope: 72.25%
maximum column height (including diagonal): 11
average column height (including diagonal): 10.09
root-mean-square column height (including diagonal): 10.45
u^ t-d-u factorization completed without error

-----------------------------------------------------------------------
u^ t-d-u solve for a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100
number of right hand sides: 1
u^ t-d-u solve completed without error
simple driver completed without error
MAXIMUM ERROR IN SOLUTION: 0.66613381E-15
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PROGRAM EXAMPLE_SKYSOL

C
C ***** TO DEMONSTRATE THE USE OF THE SPARSE SKYLINE SOLVER.
C
C ***** THIS PROGRAM ILLUSTRATES THE FOLLOWING:
C
C (1) USE OF THE FACTOR AND SOLVE ROUTINES TO SOLVE THE TEST
C PROBLEM WITH THE MATRIX STORED AS AN UNSYMMETRIC MATRIX
C IN THE STRUCTURALLY SYMMETRIC PROFILE-IN STORAGE MODE.
C (2) USE OF THE ITERATIVE REFINEMENT ROUTINES TO IMPROVE
C THE SOLUTION AND OBTAIN THE ERROR BOUNDS.
C

IMPLICIT REAL*8 (A-H, O-Z)
C

PARAMETER (NMAX = 100)
PARAMETER (NMAX_SKY = 2000)

C
REAL*8 AU(NMAX_SKY), AU_ORIG(NMAX_SKY), XO(NMAX), BX(NMAX),

$ BX_ORIG(NMAX), RWRK(3*NMAX), RPARAM(100), FERR(1),
$ BERR(1), DUM, TEMP, ANORM

C
INTEGER IAUDIAG(NMAX), IPARAM(100), IWRK(5*NMAX),

$ NX, NY, NXNY, NAU, NAL, IDUM
C
C ***** SETUP OUTPUT FILE
C

IOUNIT = 7
OPEN (UNIT=IOUNIT, FILE=’OUTPUT.DATA’, STATUS=’UNKNOWN’)
REWIND IOUNIT

C
WRITE (IOUNIT, 101)

C
C ***** SET UP THE PROBLEM SIZE
C

NX = 10
NY = 10
NXNY = NX*NY
WRITE (IOUNIT, 102) NXNY

C
C ***** GENERATE THE MATRIX IN THE FIVE DIAGONAL FORM.
C

CALL GENMAT(NX, NY, NXNY)
C
C ***** GENERATE XO, THE TRUE SOLUTION
C

DO I = 1, NXNY
XO(I) = 1.0D0

END DO
C
C ***** OBTAIN THE CORRESPONDING RIGHT HAND SIDE (IN BX). THIS IS
C OVERWRITTEN BY THE SOLUTION.
C

CALL MATVEC (NX, NY, NXNY, XO, BX)
C
C ***** CONVERT THE MATRIX INTO STRUCTURALLY SYMMETRIC PROFILE-IN
C SKYLINE STORAGE MODE.
C

CALL CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)

(continued on next page)
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C
C ***** COPY THE MATRIX AND THE RIGHT HAND SIDE FOR USE IN ITERATIVE
C REFINEMENT.
C

DO I = 1, NAU
AU_ORIG(I) = AU(I)

END DO
C

DO I = 1, NMAX
BX_ORIG(I) = BX(I)

END DO
C
C ***** SET THE PARAMETERS (INTEGER AND REAL) FOR THE FACTORIZATION
C
C IWRK = IPARAM(3) = 4*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
C IOLEVEL = IPARAM(6) = 1 (FOR MINIMAL INFORMATION)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
C PROFILE-IN STORAGE MODE)
C IBEG = IPARAM(9) = 0 (FOR FULL FACTORIZATION)
C IDET = IPARAM(10) = 0 (NO EVALUATION OF THE DETERMINANT)
C IPVT = IPARAM(11) = 0 (STOP IF ABS(PIVOT) IS SMALLER THAN
C PVT_SML)
C PVT_SML = RPARAM(1) = 1.0D-12 (STOP IF ABS(PIVOT) IS SMALLER
C THAN PVT_SML).
C

IPARAM(1) = 100
IPARAM(2) = 100
IPARAM(3) = 4*NXNY
IPARAM(4) = 0
IPARAM(5) = IOUNIT
IPARAM(6) = 1
IPARAM(7) = 1
IPARAM(8) = 3
IPARAM(9) = 0
IPARAM(10) = 0
IPARAM(11) = 0

C
RPARAM(1) = 1.0D-12

C
C ***** CALL THE ROUTINE FOR FACTORIZATION (AL, ALDIAG, NAL, RWRK ARE
C DUMMY ARGUMENTS).
C

CALL DUSKYF ( NXNY, AU, IAUDIAG, NAU,
$ DUM, IDUM, IDUM,
$ IPARAM, RPARAM, IWRK, DUM, IERROR )

C
C ***** CHECK THAT FACTORIZATION COMPLETED WITHOUT ERROR.
C

IF (IERROR.NE.0) THEN
WRITE (IOUNIT, 103) IERROR
GO TO 999

END IF

(continued on next page)
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C
C ***** SET THE PARAMETERS (INTEGER) FOR THE SOLUTION (NO REAL
C PARAMETERS USED AT PRESENT).
C
C IWRK = IPARAM(3) = 4*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
C IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
C PROFILE-IN STORAGE MODE)
C ITRANS = IPARAM(9) = 0 (TO SOLVE A * X = B)
C

IPARAM(1) = 100
IPARAM(2) = 100
IPARAM(3) = 4*NXNY
IPARAM(4) = 0
IPARAM(5) = IOUNIT
IPARAM(6) = 2
IPARAM(7) = 1
IPARAM(8) = 3
IPARAM(9) = 0

C
C ***** CALL THE ROUTINE FOR SOLUTION (SINGLE RIGHT HAND SIDE). AL,
C IALDIAG, NAL, RPARAM AND RWRK ARE DUMMY ARGUMENTS.
C

LDBX = NMAX
NBX = 1
CALL DUSKYS ( NXNY, AU, IAUDIAG, NAU,

$ DUM, IDUM, IDUM,
$ BX, LDBX, NBX,
$ IPARAM, DUM, IWRK, DUM, IERROR )

C
C ***** CHECK THAT THE SOLUTION COMPLETED WITHOUT ERROR
C

IF (IERROR.NE.0) THEN
WRITE (IOUNIT, 104) IERROR
GO TO 999

END IF
C
C ***** FIND MAX ERROR IN THE SOLUTION BEFORE REFINEMENT.
C

TEMP = ABS(XO(1) - BX(1))
DO I = 2, NXNY

TEMP = MAX( TEMP, ABS(XO(I) - BX(I)) )
END DO
WRITE (IOUNIT, 105) TEMP

C
C ***** SET THE PARAMETERS (INTEGER) FOR ITERATIVE REFINEMENT. NO
C REAL PARAMETERS USED AT PRESENT.
C
C IWRK = IPARAM(3) = 5*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 3*NXNY (REAL WORKSPACE)
C IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
C PROFILE-IN STORAGE MODE)
C ITRANS = IPARAM(9) = 1 (SOLVIN G A * X = B)
C ITMAX = IPARAM(10) = 5 (MAXIMUM NUMBER OF ITERATIONS)

(continued on next page)
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C

IPARAM(1) = 100
IPARAM(2) = 100
IPARAM(3) = 5*NXNY
IPARAM(4) = 3*NXNY
IPARAM(5) = IOUNIT
IPARAM(6) = 2
IPARAM(7) = 1
IPARAM(8) = 3
IPARAM(9) = 1
IPARAM(10) = 5

C
C ***** CALL THE ROUTINE FOR ITERATIVE REFINEMENT. AL_ORIG, AL,
C IALDIAG, NAL AND RPARAM ARE DUMMY ARGUMENTS.
C

CALL DUSKYR ( NXNY, AU_ORIG, AU, IAUDIAG, NAU,
$ DUM, DUM, IDUM, IDUM,
$ BX_ORIG, LDBX, BX, LDBX, FERR, BERR, NBX,
$ IPARAM, DUM, IWRK, RWRK, IERROR )

C
C ***** CHECK THAT THE REFINEMENT COMPLETED WITHOUT ERROR.
C

IF (IERROR.NE.0) THEN
WRITE (IOUNIT, 106) IERROR
GO TO 999

END IF
C
C ***** FIND MAX ERROR IN THE SOLUTION AFTER REFINEMENT
C

TEMP = ABS(XO(1) - BX(1))
DO I = 2, NXNY

TEMP = MAX( TEMP, ABS(XO(I) - BX(I)) )
END DO
WRITE (IOUNIT, 107) TEMP

C
999 CONTINUE

C
101 FORMAT (/,2X, ’SOLVING EXAMPLE PROBLEM WITH STRUCTURALLY ’,

$ ’SYMMETRIC PROFILE-IN SKYLINE’,
$ /,2x, ’ STORAGE MODE’,/)

102 FORMAT (/,2X, ’ORDER OF THE MATRIX:’,I5)
103 FORMAT (/,2X, ’ERROR IN THE FACTORIZATION ROUTINE:’,I10)
104 FORMAT (/,2X, ’ERROR IN THE SOLUTION ROUTINE:’,I10)
105 FORMAT (/,2X, ’MAXIMUM ERROR IN SOLUTION BEFORE REFINEMENT: ’,

$ E15.8,/)
106 FORMAT (/,2X, ’ERROR IN THE ITERATIVE REFINEMENT ROUTINE:’,I10)
107 FORMAT (/,2X, ’MAXIMUM ERROR IN SOLUTION AFTER REFINEMENT: ’,

$ E15.8,/)
C

STOP
END

(continued on next page)
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C
C
C

SUBROUTINE GENMAT (NX, NY, NXNY)
C
C ***** ROUTINE TO GENERATE THE MATRIX FOR THE EXAMPLE (IN THE FIVE
C DIAGONAL FORM). A1 AND A2 ARE THE SUBDIAGONALS, A3 IS THE
C MAIN DIAGONAL, A4 AND A5 ARE THE SUPERDIAGONALS.
C

IMPLICIT REAL*8 (A-H,O-Z)
C

PARAMETER (NMAX = 100)
C

COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
C

DO I = 1, NXNY
A3(I) = 4.0D0
A1(I) = 0.0D0
A2(I) = 0.0D0
A4(I) = 0.0D0
A5(I) = 0.0D0

END DO
C

DO J = 1, NY
DO I = 2, NX

K = (J-1)*NX+I
A2(K) = -1.0D0

END DO
DO I = 1, NX-1

K = (J-1)*NX+I
A4(K) = -1.0D0

END DO
END DO

C
DO J = 2, NY

DO I = 1, NX
K = (J-1)*NX+I
A1(K) = -1.0D0

END DO
END DO

C
DO J = 1, NY-1

DO I = 1, NX
K = (J-1)*NX+I
A5(K) = -1.0D0

END DO
END DO

C
RETURN
END

(continued on next page)
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C
C
C

SUBROUTINE MATVEC (NX, NY, NXNY, TMP1, TMP2)
C
C ***** ROUTINE TO OBTAIN THE MATRIX VECTOR MULTIPLY, USING THE MATRIX
C FROM THE FIVE-DIAGONAL FORM. TMP1 IS THE INPUT VECTOR; TMP2 IS
C THE OUTPUT VECTOR.
C

IMPLICIT REAL*8 (A-H,O-Z)
C

PARAMETER (NMAX = 100)
C

REAL*8 TMP1(*), TMP2(*)
C

INTEGER NX,NY,NXNY
C

COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
C
C

DO I = 1, NXNY
TMP2(I) = A3(I)*TMP1(I)

END DO
C

DO I = 1, NXNY-1
TMP2(I) = TMP2(I) + A4(I)*TMP1(I+1)

END DO
C

DO I = 2, NXNY
TMP2(I) = TMP2(I) + A2(I)*TMP1(I-1)

END DO
C

DO I = 1, NXNY-NX
TMP2(I) = TMP2(I) + A5(I)*TMP1(I+NX)

END DO
C

DO I = NX+1, NXNY
TMP2(I) = TMP2(I) + A1(I)*TMP1(I-NX)

END DO
C

RETURN
END

C
C
C

SUBROUTINE CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)
C
C ***** ROUTINE FOR CONVERTING THE MATRIX FROM THE FIVE-DIAGONAL FORM
C TO THE STRUCTURALLY SYMMETRIC PROFILE-IN SKYLINE FORM. THE
C MATRIX IS RETURNED IN REAL AND INTEGER ARRAYS, AU AND IAUDIAG,
C RESPECTIVELY.

(continued on next page)
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C
IMPLICIT REAL*8 (A-H,O-Z)

C
PARAMETER (NMAX = 100)

C
REAL*8 AU(*)

C
INTEGER IAUDIAG(*), NAU, NX, NY, NXNY

C
COMMON /MATRIX/ A1(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

C
C

INDEX = 1
AU(INDEX) = A3(1)
IAUDIAG(1) = 1
INDEX = INDEX + 1

C
DO I = 2, NX

AU(INDEX) = A2(I)
AU(INDEX+1) = A4(I-1)
AU(INDEX+2) = A3(I)
IAUDIAG(I) = INDEX+2
INDEX= INDEX+3

END DO
C

DO I = NX+1, NXNY
AU(INDEX) = A1(I)
INDEX = INDEX+1
DO J = 1, NX-2

AU(INDEX) = 0.0D0
INDEX = INDEX+1

END DO
AU(INDEX) = A2(I)
INDEX = INDEX+1
AU(INDEX) = A5(I-NX)
INDEX = INDEX+1
DO J = 1, NX-2

AU(INDEX) = 0.0D0
INDEX = INDEX+1

END DO
AU(INDEX) = A4(I-1)
INDEX = INDEX+1
AU(INDEX) = A3(I)
IAUDIAG(I) = INDEX
INDEX = INDEX+1

END DO
C

NAU = INDEX - 1
C

RETURN
C

END

(continued on next page)
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Output from Example 2
SOLVING EXAMPLE PROBLEM WITH STRUCTURALLY SYMMETRIC PROFILE-IN
SKYLINE STORAGE MODE ORDER OF THE MATRIX: 100
----------------------------------------------------------------------

l-d-u factorization on an unsymmetric matrix
storage scheme: structurally symmetric profile-in skyline
order of matrix: 100
partial factorization starts at row/column: 1
l-d-u factorization completed without error

---------------------------------------------------------------------
l-d-u solve for a unsymmetric matrix
storage scheme: structurally symmetric profile-in skyline
order of matrix: 100
number of right hand sides: 1
solving the system a * x = b
l-d-u solve completed without error

MAXIMUM ERROR IN SOLUTION BEFORE REFINEMENT: 0.66613381E-15
----------------------------------------------------------------------

iterative refinement using an unsymmetric matrix
storage scheme: structurally symmetric profile-in skyline
order of matrix: 100
number of right hand sides: 1

for the right hand side: 1
number of iterations of iterative refinement: 1
componentwise relative backward error: 0.97144515E-16
estimated forward error bound: 0.17274574E-12

iterative refinement completed without error
MAXIMUM ERROR IN SOLUTION AFTER REFINEMENT: 0.44408921E-15

Using the Direct Solvers for Sparse Linear Systems 13–33



Example 13–3 Skyline Solver Using Factorize and Solve Routines (C Code)

/*
*****************************************************************************
* *
* Copyright Digital Equipment Corporation 1993 - 1996. All rights reserved.*
* *
* Restricted Rights: Use, duplication, or disclosure by the U.S. *
* Government is subject to restrictions as set forth in subparagraph *
* (c) (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR *
* 52.227-14 Alt. III, as applicable. *
* *
* This software is proprietary to and embodies the confidential *
* technology of Digital Equipment Corporation. Possession, use, or *
* copying of this software and media is authorized only pursuant to a *
* valid written license from Digital or an authorized sublicensor. *
* *
*****************************************************************************

*/
/*

This is an example program to illustrate the use of the skyline
solver routines dsskyf and dsskys from a C application program. The
program generates the matrix, converts it into a profile-in symmetric
skyline matrix, factorizes the matrix using dsskyf and solves the
system using the routine dsskys. The right hand side of the problem
is generated assuming a known solution. The maximum absolute error
in the solution is printed out. The problem used is identical to the
one in the example section of the chapter on skyline solvers in the DXML
Reference Guide.

This program illustrates the following:
- routine naming convention for Digital Unix and VMS
- Differences in array indexing between Fortran and C:

C default x[n]: 0 to (n-1)
Fortran default x(n): 1 to n

- implications for storing the index vector for the
skyline storage scheme.

For more detailed explanation of the routines used, please
check the Reference Manual.

Note: the code used in this example works on both Digital Unix and
VMS. Conditional compilation is used to select the statements appropriate
to each operating system.

All output is directed to the screen.

*/

#include <stdio.h>
#include <stdlib.h>

/*
Add trailing underscores to Fortran routines on Digital Unix.

*/

#if !defined(vms) && !defined(__vms)
#define dsskyf dsskyf_
#define dsskys dsskys_
#endif

#define ABS(x) (((x) < 0) ? -(x) : (x))
#define MAX(x,y) (((x) < (y)) ? (y) : (x))

(continued on next page)
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extern void genmat();
extern void matvec();
extern void convert_to_skyline1();

extern void dsskyf();
extern void dsskys();

int main()
{

double *xo;
double *bx;
double *au;

double *av1;
double *av2;
double *av3;
double *av4;
double *av5;

double rparam[100];

double dum, temp, max1, tmp1;

int *iaudiag;
int *iwrk;

int iparam[100];

int iounit,
ierror,
nx, ny, nxny,
i, nau,
nmax_sky, nmax_sky_au,
ldbx, nbx;

/*
define the size of the problem

*/

nx = 10;
ny = 10;
nxny = nx * ny;
nmax_sky_au = 1200;

/*
obtain the memory for the 1-dimensional arrays

*/

au = (double *)malloc(nmax_sky_au*sizeof(double));
if (au == 0) perror("malloc");

xo = (double *)malloc(nxny*sizeof(double));
if (xo == 0) perror("malloc");

bx = (double *)malloc(nxny*sizeof(double));
if (bx == 0) perror("malloc");

av1 = (double *)malloc(nxny*sizeof(double));
if (av1 == 0) perror("malloc");

av2 = (double *)malloc(nxny*sizeof(double));
if (av2 == 0) perror("malloc");

av3 = (double *)malloc(nxny*sizeof(double));
if (av3 == 0) perror("malloc");

(continued on next page)
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av4 = (double *)malloc(nxny*sizeof(double));
if (av4 == 0) perror("malloc");

av5 = (double *)malloc(nxny*sizeof(double));
if (av5 == 0) perror("malloc");

iaudiag = (int *)malloc(nxny*sizeof(int));
if (iaudiag == 0) perror("malloc");

iwrk = (int *)malloc(5*nxny*sizeof(int));
if (iwrk == 0) perror("malloc");

/*
generate the matrix in the five diagonal form.

*/

genmat(nx, ny, nxny, av1, av2, av3, av4, av5);

/*
generate xo, the true solution

*/

for (i=0; i<nxny; i++)
xo[i] = 1.0;

/*
obtain the corresponding right hand side (in bx).

*/

matvec(nx, ny, nxny, av1, av2, av3, av4, av5, xo, bx);

/*
convert the matrix into symmetric profile-in skyline storage mode

*/

convert_to_skyline1 (nx, ny, nxny, av1, av2, av3, av4, av5,
au, iaudiag, &nau);

/*
set the parameters (integer and real) for the factorization

*/

iparam[0] = 100;
iparam[1] = 100;
iparam[2] = 2*nxny;
iparam[3] = 0;
iparam[4] = 6;
iparam[5] = 2;
iparam[6] = 1;
iparam[7] = 1;
iparam[8] = 0;
iparam[9] = 0;
iparam[10] = 0;
iparam[12] = 0;

rparam[0] = 1.0e-12;

/*
call the factorization routine

*/

dsskyf(&nxny, au, iaudiag, &nau,
iparam, rparam, iwrk, &dum, &ierror);

if (ierror != 0)
printf("exit from routine dsskyf with error: %d\n",ierror);

(continued on next page)
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/*
call the solve routine

*/

ldbx = nxny;
nbx = 1;

dsskys(&nxny, au, iaudiag, &nau,
bx, &ldbx, &nbx,
iparam, rparam, iwrk, &dum, &ierror);

if (ierror != 0)
printf("exit from routine dsskyf with error: %d\n",ierror);

/*
find the maximum absolute error in the solution

*/

max1 = ABS((bx[0]-xo[0]));

for (i=1; i<nxny; i++)
{

tmp1 = ABS((bx[i]-xo[i]));
max1 = MAX((max1),(tmp1));

}

/*
print the maximum absolute error

*/

printf("maximum error in the solution: %.10e\n",max1);

/*
release the memory

*/

free(au);
free(xo);
free(bx);
free(av1);
free(av2);
free(av3);
free(av4);
free(av5);

free(iaudiag);
free(iwrk);

} /* end of main() */

/*
routine to generate the matrix for the example (in the five
diagonal form). av1 and av2 are the subdiagonals, av3 is the main
diagonal and av4 and av5 are the superdiagonals.

*/

void genmat(int nx, int ny, int nxny, double av1[], double av2[],
double av3[], double av4[], double av5[])

{
int i, j, k;

(continued on next page)
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for (i=0; i<nxny; i++)
{

av3[i] = 4.0;
av1[i] = 0.0;
av2[i] = 0.0;
av4[i] = 0.0;
av5[i] = 0.0;

}

for (j=0; j<ny; j++)
{

for (i=1; i<nx; i++)
{

k = j * nx + i;
av2[k] = -1.0;

}
for (i=0; i<(nx-1); i++)
{

k = j * nx + i;
av4[k] = -1.0;

}
}

for (j=1; j<ny; j++)
{

for (i=0; i<nx; i++)
{

k = j * nx + i;
av1[k] = -1.0;

}
}

for (j=0; j<(ny-1); j++)
{

for (i=0; i<nx; i++)
{

k = j * nx + i;
av5[k] = -1.0;

}
}

} /* end of genmat() */

/*
routine to obtain the matrix vector multiply, using the matrix
from the five-diagonal form. tmp1 is the input vector; tmp2 is
the output vector.

*/

void matvec(int nx, int ny, int nxny,
double av1[], double av2[],
double av3[], double av4[], double av5[],
double *tmp1, double *tmp2)

{
int i;

for (i=0; i<nxny; i++)
tmp2[i] = av3[i] * tmp1[i];

for (i=0; i<(nxny-1); i++)
tmp2[i] = tmp2[i] + av4[i] * tmp1[i+1];

(continued on next page)
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for (i=1; i<nxny; i++)
tmp2[i] = tmp2[i] + av2[i] * tmp1[i-1];

for (i=0; i<(nxny-nx); i++)
tmp2[i] = tmp2[i] + av5[i] * tmp1[i+nx];

for (i=nx; i<nxny; i++)
tmp2[i] = tmp2[i] + av1[i] * tmp1[i-nx];

} /* end of matvec() */

/*
routine for converting the matrix from the five-diagonal form
to the symmetric profile-in skyline form. only the upper
triangular part is stored. the matrix is returned in the real
and integer arrays, au and iaudiag, respectively.

*/

void convert_to_skyline1(int nx, int ny, int nxny,
double av1[], double av2[], double av3[],
double av4[], double av5[],
double *a, int *ia, int *nau)

{
int i, j, index;

index = 0;
a[index] = av3[0];
ia[0] = 1;
index++;

for (i=1; i<nx; i++)
{

a[index] = av4[i-1];
a[index+1] = av3[i];
index += 2;
ia[i] = index ;

}

for (i=nx; i<nxny; i++)
{

a[index] = av5[i-nx];
index++;
for (j=1; j<=(nx-2); j++)
{

a[index] = 0.0;
index++;

}
a[index] = av4[i-1];
index++;
a[index] = av3[i];
index++;
ia[i] = index;

}

*nau = index - 1;

} /* end of convert_to_skyline1() */

(continued on next page)
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Output from Example 3

----------------------------------------------------------------------
u^t-d-u factorization on a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100
factorization starts at row/column: 1
size of the envelope (upper triangle): 1009
number of initial zeros in the envelope: 729
percentage sparsity of the envelope: 72.25 %
maximum column height (including diagonal): 11
average column height (including diagonal): 10.09
root-mean-square column height (including diagonal): 10.45
u^t-d-u factorization completed without error
-----------------------------------------------------------------------
u^t-d-u solve for a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100
number of right hand sides: 1
u^t-d-u solve completed without error

maximum error in the solution: 1.1102230246e-15
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//
// ***************************************************************************
// *
// * Copyright Digital Equipment Corporation 1993 - 1995. All rights reserved.
// *
// * Restricted Rights: Use, duplication, or disclosure by the U.S.
// * Government is subject to restrictions as set forth in subparagraph
// * (c) (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR
// * 52.227-14 Alt. III, as applicable.
// *
// * This software is proprietary to and embodies the confidential
// * technology of Digital Equipment Corporation. Possession, use, or
// * copying of this software and media is authorized only pursuant to a
// * valid written license from Digital or an authorized sublicensor.
// *
// ***************************************************************************
//
//
// This is an example program to illustrate the use of the iterative
// solver ditsol_pcg from a C application program. The program generates
// the matrix and the preconditioner, calls the solver and prints the
// maximum error in the solution. The right hand side of the problem is
// generated assuming a known solution. The problem used is identical to
// the one in the example section of the chapter on iterative solvers
// in the DXML Reference Guide.
//
// This program illustrates the following:
// - routine naming convention for Digital Unix and VMS
// - Differences in endexing arrays:
// C default: x[n] -> 0 to (n-1)
// Fortran default: x(n) -> 1 to n
// - how to use two dimensional arrays in C to interface with a
// Fortran library routine
// - how to use the matrix-free formulation from a C program
//
// For more detailed explanation of the routines used, please
// check the DXML Reference Manual.
//
// Note: the code used in this example works on both Digital Unix and
// VMS. Conditional compilation is used to select the statements
// appropriate to each operating system.
//
// All output from this program is sent to the screen.
//
//

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <new.h>

//
// Add trailing underscores to Fortran routines on Digital Unix.
//

(continued on next page)
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#if !defined(vms) && !defined(__vms)
#define ditsol_defaults ditsol_defaults_
#define dcreate_ilu_sdia dcreate_ilu_sdia_
#define ditsol_pcg ditsol_pcg_
#define dmatvec_sdia dmatvec_sdia_
#define dapply_ilu_sdia dapply_ilu_sdia_
#endif

inline double ABS(double x)
{

return(((x) < 0) ? -(x) : (x));
}

inline double MAX(double x, double y)
{

return(((x) < (y)) ? (y) : (x));
}

extern void (*set_new_handler(void (*memory_err)()))();
void memory_err()
{

cout << "memory allocation error\n";
exit(1); // quit program

}

extern void pcondl1(int &, int [], double [],
double [], int [],
double [], int [],
double [], double [], double [], int &);

extern void matvec1(int &, int [], double [],
double [], int [],
double [], double [], double [], int &);

extern void genmat1(int, int, int,
double [], int [],
int, int);

//
// Declare the Fortran routines
//

(continued on next page)
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extern "C"
{
void ditsol_defaults(int [], double []);
void dcreate_ilu_sdia(double [], int [],

int &, int &,
double [], int [],
int &);

void ditsol_pcg(void (*)(int &, int [], double [],
double [], int [],
double [], double [], double [],
int &),

void (*)(int &, int [], double [],
double [], int [],
double [], int [],
double [], double [], double [], int &),

double &, double &,
double [], int [],
double [], double [], int &,
double [], int [],
double &, int &,
int [], double [],
int &, double [],
int &);

void dmatvec_sdia(int &, double [], int [],
int &, int &, double [], double [], double [],
int &);

void dapply_ilu_sdia(int &,
double [], int [],
int [], int [],
double [], double [], int &);

}

//
// illustrating the use of the iterative solver:
// preconditioned conjugate gradient method, with incomplete
// cholesky preconditioning. the matrix is stored using the
// symmetric diagonal format
//

void main()
{

double *a_sdia;
double *a_ilu;
double *rwork1;
double *rhs;
double *x;
double *xo;

double rparam[50];

double dum, max1, tmp1;

int *index_sdia;
int *index_ilu;

int iparam[50];

int nxny, length, ndim, nzeros;
int i, j, idum, ierror;
int job;

// set up exception handler

(continued on next page)
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set_new_handler(memory_err);

// define the problem size

const int nx = 10;
const int ny = 10;

nxny = nx * ny;
ndim = nxny;
nzeros = 3;

// allocate memory for the 2-dimensional arrays

a_sdia = new double [nzeros*ndim];
a_ilu = new double [nzeros*ndim];

// allocate memory for the 1-dimensional arrays

rwork1 = new double [4*nxny];
rhs = new double [nxny];
x = new double [nxny];
xo = new double [nxny];

index_sdia = new int [nzeros];
index_ilu = new int [nzeros];

// set the parameters (integer and real)

ditsol_defaults(iparam, rparam);

iparam[2] = 0;
iparam[3] = 4 * nxny;

// direct all output to the screen

iparam[4] = 6;
iparam[5] = 3;
iparam[6] = 4;

// generate the matrix

genmat1(nx, ny, nxny,
a_sdia, index_sdia,
ndim, nzeros);

iparam[30] = nzeros;
iparam[31] = ndim;

// generate xo, the true solution

for (i=0; i<nxny; i++)
xo[i] = 1.0;

// obtain the right hand side

job = 0;
matvec1(job, iparam, rparam,

a_sdia, index_sdia,
&dum, xo, rhs, nxny);

// obtain initial guess (all zeros)

for (i=0; i<nxny; i++)
x[i] = 0.0;

// generate the preconditioner

(continued on next page)
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dcreate_ilu_sdia(a_sdia, index_sdia,
ndim, nzeros,
a_ilu, index_ilu,
nxny);

// call the solver

ditsol_pcg(matvec1, pcondl1, dum, dum,
a_sdia, index_sdia,
x, rhs, nxny,
a_ilu, index_ilu,
dum, idum,
iparam, rparam,
idum, rwork1,
ierror);

if (ierror != 0)
cout << "ditsol_pcg returned with error flag: " << ierror

<< endl;

// find the maximum absolute error in the solution

max1 = ABS((x[0]-xo[0]));

for (i=1; i<nxny; i++)
{

tmp1 = ABS((x[i]-xo[i]));
max1 = MAX((max1),(tmp1));

}
// print the maximum absolute error

cout << "maximum error in the solution: " << max1 << endl;

// deallocate the memory

delete a_sdia;
delete a_ilu;
delete rwork1;
delete xo;
delete x;
delete rhs;

delete index_sdia;
delete index_ilu;

} // end of main()

//
// generate the matrix for the problem described in the chapter on
// iterative solvers in the DXML Reference Guide
//

void genmat1(int nx, int ny, int nxny,
double a[], int index[],
int ndim, int nzeros)

{
int i, j, k;

for (j=0; j<nxny; j++)
for (i=1; i<nzeros; i++)

a[i*ndim+j] = 0.0;

(continued on next page)
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for (j=0; j<nxny; j++)
a[0*ndim+j] = 4.0;

for (j=0; j<ny; j++)
for (i=1; i<nx; i++)

{
k = j * nx + i;
a[2*ndim+k] = -1.0;

}

for (j=1; j<ny; j++)
for (i=0; i<nx; i++)

{
k = j * nx + i;
a[1*ndim+k] = -1.0;

}

index[0] = 0;
index[2] = -1;
index[1] = -nx;

} // end of genmat1()

//
// provide the matrix-vector routine using the standard parameter list
// as described in the DXML Reference Guide
//

void matvec1(int &job, int iparam[], double rparam[],
double a[], int ia[],
double w[], double x[], double y[], int &n)

{
int nzeros, ndim;
double dum;

nzeros = iparam[30];
ndim = iparam[31];

dmatvec_sdia(job, a, ia, ndim, nzeros, &dum, x, y, n);

} // end of matvec1()

//
// provide the left preconditioning routine using the standard parameter
// list as described in the DXML Refernce Guide
//

void pcondl1(int &job, int iparam[], double rparam[],
double ql[], int iql[],
double a[], int ia[],
double w[], double x[], double y[], int &n)

{
int nzeros, ndim, job1;
double *tmp;

// ilu preconditioning

nzeros = iparam[30];
ndim = iparam[31];

// allocate temporary storage

tmp = new double [n];

(continued on next page)
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job1 = 0;
dapply_ilu_sdia(job1, ql, iql, &ndim, &nzeros, x, tmp, n);
job1 = 1;
dapply_ilu_sdia(job1, ql, iql, &ndim, &nzeros, tmp, y, n);

// deallocate temporary storage

delete tmp;

} // end of pcondl1()

Output from Example 4

method used : cg with spd split preconditioning
order of system = 100
stopping criterion used = 1
maximum iterations allowed = 100
tolerance for convergence = 0.10000000E-05

iteration = 0 stopping test = 0.69282032E+01
iteration = 1 stopping test = 0.19194193E+01
iteration = 2 stopping test = 0.12100937E+01
iteration = 3 stopping test = 0.52439623E+00
iteration = 4 stopping test = 0.84029860E-01
iteration = 5 stopping test = 0.20539881E-01
iteration = 6 stopping test = 0.34309306E-02
iteration = 7 stopping test = 0.47063334E-03
iteration = 8 stopping test = 0.16605002E-03
iteration = 9 stopping test = 0.45072557E-04
iteration = 10 stopping test = 0.72087304E-05
iteration = 11 stopping test = 0.88047573E-06

solution obtained after 11 iterations
normal exit from solver
final value of stopping test = 0.88047573E-06

maximum error in the solution: 5.6260082260e-08
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This section provides descriptions of the direct solver subprograms for real
double precision operations. The operations are grouped by functionality, starting
with the routines for the symmetric matrices, followed by the routines for the
unsymmetric matrices.





DSSKYN

DSSKYN
Symmetric Sparse Matrix Norm Evaluation Using Skyline Storage
Scheme

Format

DSSKYN (n, au, iaudiag, nau, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the matrix A stored in the
skyline storage scheme, using either the profile-in or the diagonal-out storage
mode.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and n+ 1
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in array AU.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the
evaluation of the matrix norms.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�n.
On exit, iparam(3) is unchanged.
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iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�n
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYN. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = inorm = 1

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYN routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): inorm
On entry, defines the matrix quantity to be evaluated:

inorm = 1 : 1-norm of A
inorm = 2 : 1-norm of A
inorm = 3 : Frobenius norm of A
inorm = 4 : Maximum absolute value of A

Default: inorm = 1.
On exit, iparam(9) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the norm
evaluation.
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rparam(1): anorm
On entry, an unspecified variable.
On exit, rparam(1) contains the matrix quantity evaluated, as defined by the
value of IPARAM(9) = inorm.

iwrk
integer*4
On entry, an array of length at least n used for integer workspace.
On exit, iwrk contains information used by the routine DSSKYN. This
information is not used by any other routine and therefore can be overwritten.

rwrk
real*8
On entry, an array of length at least n used for real workspace.
On exit, rwrk contains information used by the routine DSSKYN. This
information is not used by any other routine and therefore can be overwritten.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYN.

Description

DSSKYN evaluates the following quantities for the symmetric matrixA:

• 1-norm of A:
jjAjj1 = max

j

X
i

jaij j

• 1-norm of A:
jjAjj1 = max

i

X
j

jaij j

• Frobenius-norm of A:
jjAjjF =

sX
i

X
j

jaij j2

• Largest absolute value of A:
max
i;j
jaij j

The last quantity in the above list is not a matrix norm. The quantity evaluated
is determined by the value of inorm, with the 1-norm and 1-norm being identical
for symmetric matrices.

The real and integer workspace used by the routine DSSKYN do not contain
information for use by any other routines, and can therefore be overwritten.

As the routine DSSKYN requires the matrix A, it should be called prior to a call
to the factorization routine DSSKYF, which overwrites the elements of A by its
UTDU factorization.

Sparse Direct Solver Routines 13–53



DSSKYF

DSSKYF
Symmetric Sparse Matrix Factorization Using Skyline Storage
Scheme (Serial and Parallel Versions)

Format

DSSKYF (n, au, iaudiag, nau, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the matrix A stored in the
skyline storage scheme, using either the profile-in or the diagonal-out storage
mode.
On exit, au contains the UTDU factorization of the matrix A. au must remain
unchanged between the call to the routine DSSKYF and any routine that uses
the factors such as DSSKYS, DSSKYC, DSSKYR and DSSKYX.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and n+ 1
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in array AU.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the UTDU
factorization.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�2n.
On exit, iparam(3) is unchanged.
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iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk can be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYF. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ibeg = 0
IPARAM(10) = idet = 0
IPARAM(11) = ipvt = 0
IPARAM(13) = inertia = 0
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYF routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): ibeg
On entry, defines if full or partial factorization is to be performed. If ibeg = 0,
then a full factorization is performed for rows and columns 1 through n. If ibeg
> 0, then a partial factorization is performed starting from rows and columns
ibeg + 1 through n, that is, rows and columns from 1 through ibeg have already
been factorized. Default: ibeg = 0.
On exit, iparam(9) is unchanged.

iparam(10): idet
On entry, defines if the determinant of the matrix A is to be calculated. If idet
= 0, then the determinant is not calculated; if idet = 1, the determinant is
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calculated as det_base * 10det_pwr. See RPARAM(4) and RPARAM(5). Default:
idet = 0.
On exit, iparam(10) is unchanged.

iparam(11): ipvt
On entry, defines if the factorization should continue when a small pivot (defined
by RPARAM(1) is encountered. If ipvt = 0 and the absolute value of the
pivot element is smaller than pvt_sml = RPARAM(1), then the factorization
process is stopped and control returned to the calling subprogram. If ipvt =
1 and a pivot smaller than RPARAM(1) in absolute value is encountered in
the factorization, the process continues. If ipvt = 2 and a pivot smaller than
RPARAM(1) in absolute value is encountered in the factorization, it is replaced by
a predetermined value pvt_new = RPARAM(2), and the factorization is continued.
Default: ipvt = 0.
On exit, iparam(11) is unchanged.

iparam(12): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(12) contains the location of the first pivot element smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(12) = 0, then no such pivot element exists.

iparam(13): inertia
On entry, defines if the inertia of the matrix A should be calculated. The inertia
of the symmetric matrix A is the triplet of integers (ipeigen, ineigen, izeigen),
consisting of the number of positive, negative, and zero eigenvalues, respectively.
If inertia = 0, then the inertia is not calculated; if inertia = 1, then the number
of positive and negative eigenvalues are returned in ipeigen = IPARAM(14)
and ineigen = IPARAM(15), respectively. An indication of the existence of zero
eigenvalues is returned in izeigen = IPARAM(16). Default: inertia = 0.
On exit, iparam(13) is unchanged.

iparam(14): ipeigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(14) contains the number of positive eigenvalues
of the matrix A.

iparam(15): ineigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(15) contains the number of negative eigenvalues
of the matrix A.

iparam(16): izeigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(16) indicates if the matrix A has any zero
eigenvalues. If izeigen = 0, then the matrix A does not have a zero eigenvalue; if
izeigen = 1, then the matrix A has at least one zero eigenvalue.

rparam
real*8
An array of length at least 100, containing the real parameters for the UTDU
factorization.
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rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml, in absolute value, is encountered in
the factorization process, then, depending on the value of ipvt = IPARAM(11),
the process either stops, continues or continues after the pivot is set equal to
pvt_new = RPARAM(2). pvt_sml > 0. Recommended value: 10�15� pvt_sml
�1. Default: pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2
and the pivot element is less than pvt_sml in absolute value. pvt_new should
be large enough to avoid overflow when calculating the reciprocal of the pivot
element.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller
than pvt_sml in absolute value. This element occurs at the location returned
in IPARAM(12). If no such pivot element is found, the value of pvt_val is
unspecified.

rparam(4): det_base
On entry, an unspecified variable.
On exit, defines the base for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr. 1:0� det_base < 10.0.

rparam(5): det_pwr
On entry, an unspecified variable.
On exit, defines the power for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr.

iwrk
integer*4
On entry, an array of length at least 2n used for integer workspace.
On exit, iwrk contains information for use by routines that use the factorization
such as DSSKYS, DSSKYC, DSSKYR, and DSSKYX. The first 2n elements of
iwrk should therefore be passed unchanged to these routines.

rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. Presently, rwrk is not used by the routine DSSKYF.
It can be a dummy variable.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYF.
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Description

DSSKYF obtains the factorization of the symmetric matrixA as:

A = UTDU

where D is a diagonal matrix, and U is a unit upper triangular matrix. The
matrix A is stored in a skyline form, using either the profile-in storage mode or
the diagonal-out storage mode.

The routine DSSKYF does not perform any pivoting to preserve the numerical
stability of the UTDU factorization. It is therefore primarily intended for the
solution of symmetric positive (or negative) definite systems as they do not
require pivoting for numerical stability. Caution is urged when using this routine
for symmetric indefinite systems.

If a small pivot, in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process and
returning to the calling sub-program, continuing the factorization process with
the small value of the pivot, or continuing after setting the pivot equal to some
predetermined value, pvt_new. The location of the first occurrence of a small
pivot is returned in ipvt_loc and its value in pvt_val.

In addition to the UTDU factorization, you can also obtain the determinant
of A, the number of positive and negative eigenvalues of the matrix A and an
indication of the existence of zero eigenvalues. A partial factorization can also be
obtained by appropriately setting the value of ibeg. If ibeg > 0, then factorization
begins at row and column ibeg + 1; the rows and columns from 1 to ibeg are
assumed to have been already factorized. When ibeg > 0, the determinant of A,
the inertia of A and the statistics on the matrix are calculated from rows and
columns ibeg + 1 through n. If the factorization process is stopped at row i due
to a small pivot, then the inertia, determinant and statistics on the matrix are
evaluated for rows ibeg + 1 through (i� 1).

The data in the first 2n elements of the integer workspace, IWRK, are used
in routines that use the UTDU factorization, such as DSSKYS, DSSKYC and
DSSKYR. This data must therefore remain unchanged between the call to
DSSKYF and any one of these routines. The real workspace array, RWRK, is not
used at present.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DSSKYS
Symmetric Sparse Matrix Solve Using Skyline Storage Scheme

Format

DSSKYS (n, au, iaudiag, nau, bx, ldbx, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the UTDU factorization of
the matrix A stored in the skyline storage scheme, using either the profile-in or
the diagonal-out storage mode. The factorization has been obtained by a prior call
to the routine DSSKYF. au must remain unchanged between calls to the routines
DSSKYF and DSSKYS.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and (n + 1)
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in array AU.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

bx
real*8
On entry, a two-dimensional array BX of order ldbx by at least nbx, containing the
nbx right sides.
On exit, bx contains the solutions for the nbx systems.

ldbx
integer*4
On entry, the leading dimensional of array BX. ldbx�n.
On exit, ldbx is unchanged.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.
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iparam
integer*4
An array of length at least 100, containing the integer parameters for the matrix
solve operation.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. As the real parameter array
is not used at present, nrparam can be unspecified.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�2n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk can be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYS. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYS routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. The storage scheme used
in the routines DSSKYF and DSSKYS must be identical. Default: istore = 1.
On exit, iparam(8) is unchanged.
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rparam
real*8
An array of length at least 100, containing the real parameters for the solution.
On exit, rparam is unchanged. rparam is not used by the routine DSSKYS at
present, but is reserved for future use. It can be a dummy variable.

iwrk
integer*4
On entry, an array of length at least 2n used for integer workspace. The first 2n
elements of the array IWRK, generated by the routine DSSKYF, should be passed
unchanged to the routine DSSKYS.
On exit, the first 2n elements of iwrk are unchanged.

rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. Presently, rwrk is not used by the routine DSSKYS,
but is reserved for future use. It can be a dummy variable.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYS.

Description

DSSKYS solves the system:
AX = B

where A is a symmetric matrix stored in a skyline form, using either the profile-
in storage mode or the diagonal-out storage mode; B is a matrix of nbx right sides
and X is the matrix of the corresponding nbx solution vectors. On entry to the
routine DSSKYS, the array BX contains the nbx right sides; on exit, these are
overwritten by the solution vectors.

The matrix A has been factorized as:

A = UTDU

by a prior call to the routine DSSKYF. U is a unit upper triangular matrix and D
is a diagonal matrix. The first 2n elements of the integer workspace array IWRK,
generated by DSSKYF, contain information for use by DSSKYS and therefore
must remain unchanged between the calls to the routines DSSKYF and DSSKYS.

The real work array, RWRK, is not used at present. The storage scheme used in
the routines DSSKYF and DSSKYS must be identical.

Once the factorization has been obtained, the routine DSSKYS can be used to
solve a system with multiple right hand sides, by setting nbx > 1. The routine
can also be called repeatedly, provided the first 2n elements of the work array
IWRK remain unchanged between calls.
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DSSKYC
Symmetric Sparse Matrix Condition Number Estimator Using Skyline
Storage Scheme

Format

DSSKYC (n, au, iaudiag, nau, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the UTDU factorization of
the matrix A stored in the skyline storage scheme, using either the profile-in, or
the diagonal-out storage mode. The factorization has been obtained by a prior call
to the routine DSSKYF. au must remain unchanged between calls to the routines
DSSKYF and DSSKYC.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and (n + 1)
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in array AU.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the
condition number estimator.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�3n.
On exit, iparam(3) is unchanged.
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iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�2n.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYC. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYC routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. The storage scheme used
in the routines DSSKYF and DSSKYC must be identical. Default: istore = 1.
On exit, iparam(8) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the condition
number estimator.

rparam(1): anorm
On entry, the 1-norm of the matric A, which has been obtained by a prior call to
routine DSSKYN.
On exit, rparam(1) is unchanged.

rparam(2): ainorm
On entry, an unspecified variable.
On exit, rparam(2) contains the estimate of the 1-norm of A�1.

rparam(3): rcond
On entry, an unspecified variable.
On exit, rparam(3) contains the reciprocal of the estimate of the 1-norm
condition number of the matrix A.
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iwrk
integer*4
On entry, an array of length at least 3n used for integer workspace. The first 2n
elements of iwrk generated by the routine DSSKYF must be passed unchanged
to the routine DSSKYC.
On exit, the first 2n elements of iwrk are unchanged. The next n elements are
used as integer workspace by DSSKYC.

rwrk
real*8
On entry, an array of length at least 2n used for integer workspace.
On exit, the first 2n elements of rwrk are overwritten.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYC.

Description

DSSKYC obtains the reciprocal of the estimate of the 1-norm condition number of
the symmetric matrix A as:

rcond(A) =
1

jjAjj�jjA�1jj

The 1-norm of A�1 is obtained using the LAPACK routine DLACON, which uses
Higham’s modification [Higham 1988] of Hager’s method [Hager 1984]. This
routine uses reverse communication for the evaluation of matrix-vector products.
As the matrix under consideration is A�1, routine DSSKYC requires calls to
the routine DSSKYS. Hence the first 2n elements of the integer work array,
IWRK, which are generated by the routine DSSKYF, and used by the routine
DSSKYS, must remain unchanged between the calls to the routines DSSKYF and
DSSKYC. The storage scheme used in the routines DSSKYF and DSSKYC must
be identical.
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DSSKYR
Symmetric Sparse Iterative Refinement Using Skyline Storage
Scheme

Format

DSSKYR (n, au, auf, iaudiag, nau, b, ldb, x, ldx, ferr, berr, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the matrix A stored in the
skyline storage scheme, using either the profile-in or the diagonal-out storage
mode.
On exit, au is unchanged.

auf
real*8
On entry, an array of length at least nau, containing UTDU factorization of the
matrix A stored in the skyline storage scheme, using either the profile-in or the
diagonal-out storage mode. The factorization has been obtained by a prior call to
the routine DSSKYF. auf must remain unchanged between calls to the routines
DSSKYF and DSSKYR.
On exit, auf is unchanged.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and (n + 1)
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in arrays AU and AUF.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

b
real*8
On entry, a two-dimensional array B of order ldb by at least nbx, containing the
nbx right sides.
On exit, b is unchanged.

ldb
integer*4
On entry, the leading dimension of array B. ldb�n.
On exit, ldb is unchanged.
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x
real*8
On entry, a two-dimensional array X of order ldx by at least nbx, containing the
nbx solution vectors obtained after a call to the routine DSSKYS.
On exit, x contains the improved solutions obtained after iterative refinement.

ldx
integer*4
On entry, the leading dimension of array X. ldx�n.
On exit, ldx is unchanged.

ferr
real*8
On entry, an array FERR of length at least nbx, whose elements are unspecified
variables.
On exit, ferr contains the estimated error bounds for each of the nbx solution
vectors.

berr
real*8
On entry, an array BERR of length at least nbz, whose elements are unspecified
variables.
On exit, berr contains the component-wise relative backward error for each of
the nbx solution vectors.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the
iterative refinement and error bounds calculation.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. As the real parameter array
is not used at present, nrparam can be unspecified.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�3n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�3n.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYR. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
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On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = itmax = 5

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYR routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): itmax
On entry, defines the maximum number of iterations for the iterative refinement
process. Default: itmax = 5.
On exit, iparam(9) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the iterative
refinement and error bounds calculation.
On exit, rparam is unchanged. rparam is not used by the routine DSSKYR at
present, but is reserved for future use. It can be a dummy variable.

iwrk
integer*4
On entry, an array of length at least 3n used for integer workspace. The first 2n
elements of the array IWRK, generated by the routine DSSKYF, should be passed
unchanged to the routine DSSKYR.
On exit, the first 2n elements of iwrk are unchanged.

rwrk
real*8
On entry, an array of length at least 3n used for real workspace.
On exit, the first 3n elements of rwrk are overwritten.
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ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYR.

Description

DSSKYR obtains an improved solution to the system:

AX = B

via iterative refinement. This is done by calculating the matrix of residuals R
using the matrix of solutions X̂ obtained from DSSKYS, and obtaining a new
matrix of solutions Xnew as follows:

R = B � AX̂

�X = A�1R

and:
Xnew = X̂ + �X

The process of iterative refinement therefore requires both the original matrix A
as well as the UTDU factorization obtained via the routine DSSKYF. Since this
routine overwrites the matrix A by the factorization, a copy of the matrix must
be made prior to the call to DSSKYF. Further, both the right sides B and the
solution vectors x are required during iterative refinement. Since the solution
process in the routine DSSKYS overwrites the right sides with the solution
vectors, a copy of the right sides must be made prior to the call to the routine
DSSKYS.

In addition to the iterative refinement of the solution vectors, the routine
DSSKYR also provides the component-wise relative backward error, berr and the
estimated forward error bound, ferr, for each solution vector [Arioli, Demmel,
Duff 1989, Anderson et. al. 1992]. berr is the smallest relative change in any
entry of A or b that makes x̂ an exact solution. ferr bounds the magnitude of the
largest entry in:

x̂� xtrue

divided by the magnitude of the largest entry in: x̂.

The process of iterative refinement is continued as long as all of the following
conditions are satisfied [Arioli, Demmel, Duff 1989]:

• The number of iterations of the iterative refinement process is less than
IPARAM(9) = itmax.

• berr reduces by at least a factor of 2 during the previous iteration.

• berr is larger than the machine precision.

The routine DSSKYR is called after a call to the routine DSSKYF to obtain the
UTDU factorization and a call to the routine DSSKYS to obtain the solution
x. The first 2n elements of the integer workspace array IWRK, generated by
DSSKYF, contain information for use by DSSKYR and therefore must remain
unchanged between the calls to the routines DSSKYF and DSSKYR. The real
work array, RWRK, is not used at present. The storage scheme used in the
routines DSSKYF, DSSKYS, and DSSKYR must be identical.
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DSSKYD
Symmetric Sparse Simple Driver Using Skyline Storage Scheme

Format

DSSKYD (n, au, iaudiag, nau, bx, ldbx, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the matrix A stored in the
skyline storage scheme, using either the profile-in, or the diagonal-out storage
mode.
On exit, au contains the UTDU factorization of the matrix A. au must remain
unchanged between the call to the routine DSSKYD and any subsequent calls to
the routines DSSKYS, DSSKYC, and DSSKYR.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and (n + 1)
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in array AU.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

bx
real*8
On entry, a two-dimensional array BX of order ldbx by at least nbx, containing the
nbx right sides.
On exit, bx contains the solutions for the nbx systems.

ldbx
integer*4
On entry, the leading dimensional of array BX. ldbx�n.
On exit, ldbx is unchanged.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.
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iparam
integer*4
An array of length at least 100, containing the integer parameters for the simple
driver.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�2n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk can be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYD. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ipvt = 0
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYD routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.
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iparam(9): ipvt
On entry, defines if the factorization should continue when a small pivot, (defined
by RPARAM(1), is encountered. If ipvt = 0 and the absolute value of the pivot
element is smaller than pvt_sml = RPARAM(1), then the factorization process is
stopped and control returned to the calling subprogram. If ipvt=1 and a pivot
smaller than RPARAM(1) in absolute value is encountered in the factorization,
the process continues. If ipvt=2 and a pivot smaller than RPARAM(1) in absolute
value, is encountered in the factorization, it is replaced by a predetermined value
pvt_new = RPARAM(2), and the factorization is continued. Default: pvt_new = 0.
On exit, iparam(9) is unchanged.

iparam(10): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(10) contains the location of the first pivot element smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(10)= 0, then no such pivot element exits.

rparam
real*8
An array of length at least 100, containing the real parameters for the simple
driver.

rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml in absolute value is encountered in the
factorization process, then, depending on the value of ipvt = IPARAM(9), the
process either stops, continues or continues after the pivot is set equal to pvt_new
= RPARAM(2). pvt_sml > 0. Recommended value: 10�15� pvt_sml �1. Default:
pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2
and the pivot element is less than pvt_sml in absolute value. pvt_sml should
be large enough to avoid overflow when calculating the reciprocal of the pivot
element.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller than
pvt_sml in absolute value. This element occurs at the location returned
in IPARAM(10). If no such pivot element is found, the value of pvt_val is
unspecified.

iwrk
integer*4
On entry, an array of length at least 2n used for integer workspace.
On exit, the first 2n elements of iwrk contain information generated by the
factorization routine DSSKYF. This information is required by routines that use
the factorization such as DSSKYS, DSSKYC, DSSKYR and remain unchanged
between the call to DSSKYD and any subsequent calls to one of these routines.
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rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. Presently, rwrk is not used by the routine
DSSKYD. It can be a dummy variable.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYD.

Description

DSSKYD is a simple driver routine that factors and solves the system:

AX = B

where A is a symmetric matrix stored in a skyline form, using either the profile-
in storage mode or the diagonal-out storage mode; B is a matrix of nbx right sides
and x is the matrix of the corresponding nbx solution vectors. On entry to the
routine DSSKYD, the array BX contains the nbx right sides; on exit, these are
overwritten by the solution vectors.

The matrix A is first factorized as:

A = UTDU

by a call to the routine DSSKYF. U is a unit upper triangular matrix and D is a
diagonal matrix. The routine DSSKYF does not perform any pivoting to preserve
the numerical stability of the UTDU factorization. It is therefore primarily
intended for the solution of symmetric positive (or negative) definite systems as
they do not require pivoting for numerical stability. Caution is urged when using
this routine for symmetric indefinite systems.

If a small pivot, in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process and
returning to the calling subprogram, continuing the factorization process with
the small value of the pivot, or continuing after setting the pivot equal to some
predetermined value, pvt_new. The location of the first occurrence of a small
pivot is returned in ipvt_loc and its value in pvt_val.

After the factorization has been obtained without any error, the routine DSSKYD
calls the solve routine, DSSKYS, to solve the system. The call to the routine
DSSKYD can be followed by a call to the routines DSSKYS, DSSKYC and
DSSKYR, provided the first 2n elements of the work array IWRK remain
unchanged between calls. The real workspace array, RWRK, is not used at
present.
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DSSKYX
Symmetric Sparse Expert Driver Using Skyline Storage Scheme

Format

DSSKYX (n, au, auf, iaudiag, nau, b, ldb, x, ldx, ferr, berr, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array of length at least nau, containing the matrix A stored in the
skyline storage scheme, using either the profile-in or the diagonal-out storage
mode.
On exit, au is unchanged.

auf
real*8
On entry, if RPARAM(9) = ifactor = 0, auf is an unspecified array of length at
least nau. If ifactor = 1, auf is an array of length at least nau, containing the
UTDU factorization of the matrix A stored in the skyline storage scheme, using
either the profile-in or the diagonal-out storage mode. The factorization has been
obtained by a prior call to the routine DSSKYF.
On exit, if ifactor = 0, auf contains the UTDU factorization of the matrix A
stored in the skyline storage scheme, using either the profile-in or the diagonal-
out storage mode. If ifactor = 1, then auf is unchanged.

iaudiag
integer*4
On entry, an array of length at least n for the profile-in storage mode and (n + 1)
for the diagonal-out storage mode, containing the pointers to the locations of the
diagonal elements in arrays AU and AUF (if ifactor =1).
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements in array AU. nau is also the envelope size
of the symmetric part of the matrix A. For the profile-in storage mode, nau =
IAUDIAG(n). For the diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

b
real*8
On entry, a two-dimensional array B of order ldb by at least nbx, containing the
nbx right sides.
On exit, b is unchanged.
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ldb
integer*4
On entry, the leading dimension of array B. ldb�n.
On exit, ldb is unchanged.

x
real*8
On entry, a two-dimensional array X of order ldx by at least nbx.
On exit, x contains the solutions obtained after iterative refinement.

ldx
integer*4
On entry, the leading dimension of array X. ldx�n.
On exit, ldx is unchanged.

ferr
real*8
On entry, an array FERR of length at least nbx, whose elements are unspecified
variables.
On exit, ferr contains the estimated error bounds for each of the nbx solution
vectors.

berr
real*8
On entry, an array BERR of length at least nbx, whose elements are unspecified
variables.
On exit, berr contains the component-wise relative backward error for each of
the nbx solution vectors.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the expert
driver.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�3n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�3n.
On exit, iparam(4) is unchanged.

13–74 Sparse Direct Solver Routines



DSSKYX

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DSSKYX. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ifactor = 0
IPARAM(10) = idet = 0
IPARAM(11) = ipvt = 0
IPARAM(13) = inertia = 0
IPARAM(17) = itmax = 5
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DSSKYX routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the matrix A is stored using the profile-in storage mode; if istore = 2, the
matrix A is stored using the diagonal-out storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): ifactor
On entry, defines if the matrix A has already been factored on input to the routine
DSSKYX. If ifactor = 0, the matrix is unfactored and array AUF is unspecified.
If ifactor = 1, the matrix has been factored by a prior call to the routine DSSKYF,
and array AUF contains the UTDU factorization of A. Default: ifactor = 0.
On exit, iparam(9) is unchanged.

iparam(10): idet
On entry, defines if the determinant of the matrix A is to be calculated. If idet
= 0, then the determinant is not calculated; if idet = 1, the determinant is
calculated as det_base * 10det_pwr. See RPARAM(4) and RPARAM(5). Default:
idet = 0.
On exit, iparam(10) is unchanged.
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iparam(11): ipvt
On entry, defines if the factorization should continue when a small pivot, defined
by RPARAM(1), is encountered. If ipvt = 0 and the absolute value of the
pivot element is smaller than pvt_sml = RPARAM(1), then the factorization
process is stopped and control returned to the calling subprogram. If ipvt =
1 and a pivot smaller than RPARAM(1) in absolute value is encountered in
the factorization, the process continues. If ipvt = 2 and a pivot smaller than
RPARAM(1) in absolute value is encountered in the factorization, it is replaced by
a predetermined value pvt_new = RPARAM(2), and the factorization is continued.
Default: ipvt = 0.
On exit, iparam(11) is unchanged.

iparam(12): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(12) contains the location of the first pivot element smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(12) = 0, then no such pivot element exists. If ifactor = 1,
then iparam (12) is unspecified.

iparam(13): inertia
On entry, defines if the inertia of the matrix A should be calculated during
factorization. The inertia of the symmetric matrix A is the triplet of integers
(ipeigen, ineigen, izeigen), consisting of the number of positive, negative and zero
eigenvalues, respectively. If inertia = 0, then the inertia is not calculated; if
inertia = 1, then the number of positive and negative eigenvalues are returned in
ipeigen = IPARAM(14) and ineigen = IPARAM(15), respectively. An indication of
the existence of zero eigenvalues is returned in izeigen = IPARAM(16). Default:
inertia = 0.
On exit, iparam(13) is unchanged.

iparam(14): ipeigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(14) contains the number of positive eigenvalues
of the matrix A. If ifactor = 0, then iparam(14) is unspecified.

iparam(15): ineigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(15) contains the number of negative eigenvalues
of the matrix A. If ifactor = 0, then iparam(15) is unspecified.

iparam(16): izeigen
On entry, an unspecified variable.
On exit, if inertia = 1, iparam(16) indicates if the matrix A has any zero
eigenvalues. If izeigen = 0, then the matrix A does not have a zero eigenvalue; if
izeigen = 1, then the matrix A has at least one zero eigenvalue. If ifactor = 0, the
iparam(16) is unspecified.

iparam(17): itmax
On entry, defines the maximum number of iterations for the iterative refinement
process. Default: itmax = 5.
On exit, iparam(17) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the expert
driver.
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rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml, in absolute value, is encountered in
the factorization process, then, depending on the value of ipvt = IPARAM(11),
the process either stops, continues or continues after the pivot is set equal to
pvt_new = RPARAM(2). pvt_sml > 0. Recommended value: 10�15� pvt_sml �1.
Default: pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2
and the pivot element is less than pvt_sml in absolute value. pvt_new should
be large enough to avoid overflow when calculating the reciprocal of the pivot
element. If ifactor = 1, then rparam(2) is unspecified.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller
than pvt_sml in absolute value. This element occurs at the location returned
in IPARAM(12). If no such pivot element is found, the value of pvt_val is
unspecified. If ifactor = 1, then rparam(3) is unspecified.

rparam(4): det_base
On entry, an unspecified variable.
On exit, defines the base for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr. If ifactor = 1, then rparam(4)
is unspecified. 1:0� det_base �10:0).

rparam(5): det_pwr
On entry, an unspecified variable.
On exit, defines the power for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr. If ifactor = 1, then rparam(5)
is unspecified.

rparam(6): anorm
On entry, an unspecified variable.
On exit, rparam(6) contains the 1-norm of the matrix A.

rparam(7): ainorm
On entry, an unspecified variable.
On exit, rparam(7) contains the estimate of the 1-norm of A�1.

rparam(8): rcond
On entry, an unspecified variable.
On exit, rparam(8) contains the reciprocal of the estimate of the 1-norm
condition number of the matrix A.

iwrk
integer*4
On entry, an array of length at least 3n used for integer workspace. If ifactor = 1,
then the first 2n elements of the array IWRK contain information generated by
the routine DSSKYF. If ifactor = 0, then this information is unspecified.
On exit, the first 2n elements of the array IWRK contain information generated
by the routine DSSKYF. This information is used by the routines DSSKYS and
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DSSKYR, and should therefore remain unchanged between the call to the routine
DSSKYX and any subsequent call to the routines DSSKYS and DSSKYR.

rwrk
real*8
On entry, an array of length at least 3n used for real workspace.
On exit, the first 3n elements of rwrk are overwritten.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DSSKYX.

Description

DSSKYX is an expert driver routine that:

• Obtains the UTDU factorization of the matrix A via a call to the routine
DSSKYF.

• If the factorization is successful, obtains the 1-norm condition number
estimate of the matix A by a call to the routine DSSKYC.

• If the reciprocal of the condition number estimate is greater than the machine
precision, DSSKYX uses the factorization to solve the system:

AX = B

using the routine DSSKYS.

• Improves the solution X via iterative refinement and obtains the error bounds
using the routine DSSKYR.

DSSKYX first obtains the factorization of the symmetric matrix A as:

A = UTDU

where D is a diagonal matrix, and U is a unit upper triangular matrix. The
matrix A is stored in a skyline form, using either the profile-in storage mode or
the diagonal-out storage mode. If the matrix is already factored, as indicated by
ifactor, then this step is skipped.

The routine DSSKYF does not perform any pivoting to preserve the numerical
stability of the UTDU factorization. It is therefore primarily intended for the
solution of symmetric positive (or negative) definite systems as they do not
require pivoting for numerical stability. Caution is urged when using this routine
for symmetric indefinite systems.

If a small pivot, in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process and
returning to the calling subprogram, continuing the factorization process with
the small value of the pivot, or continuing after setting the pivot equal to some
predetermined value, pvt_new. The location of the first occurrence of a small
pivot is returned in ipvt_loc and its value in pvt_val.
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In addition to the UTDU factorization, you can also obtain the determinant of
A, the number of positive and negative eigenvalues of the matrix A, and an
indication of the existence of zero eigenvalues. If the factorization process is
stopped at row i due to a small pivot, then the inertia and determinant are
evaluated for rows 1 through (i� 1).

The routine DSSKYX does not allow a partial factorization of the matrix A. If a
partial factorization of A is required, the routine DSSKYF is recommended.

DSSKYC obtains the reciprocal of the estimate of the condition number of the
symmetric matrix A as:

rcond(A) =
1

jjAjj�jjA�1jj

The 1-norm of A�1 is obtained using the LAPACK routine DLACON, which uses
Higham’s modification [Higham 1988] of Hager’s method [Hager 1984]. If the
reciprocal of the condition number estimate is larger than the machine precision,
the routine DSSKYX solves the system via a call to the routine DSSKYS and then
improves on the solution via iterative refinement. This is done by calculating the
matrix of residuals R using the matrix of solutions X̂ obtained from DSSKYS,
and obtaining a new matrix of solutions Xnew as follows:

R = B � AX̂

�X = A�1R

and:
Xnew = X̂ + �X

In addition to the iterative refinement of the solution vectors, the routine
DSSKYX also provides the component-wise relative backward error, berr and the
estimated forward error bound, ferr, for each solution vector [Arioli, Demmel,
Duff 1989, Anderson et. al. 1992]. berr is the smallest relative change in any
entry of A or b that makes x̂ an exact solution. ferr bounds the magnitude of the
largest entry in x̂� xtrue divided by the magnitude of the largest entry in x̂.

The process of iterative refinement is continued as long as all of the following
conditions are satisfied [Arioli, Demmel, Duff 1989]:

• The number of iterations of the iterative refinement process is less than
IPARAM(10) = itmax.

• berr reduces by at least a factor of 2 during the previous iteration.

• berr is larger than the machine precision.

The first 4n elements of the integer workspace array IWRK, generated by
DSSKYF, contain information for use by the routines DSSKYS and DSSKYR.
They must therefore remain unchanged between the calls to the routine DSSKYX
and any subsequent calls to the routines DSSKYS and DSSKYR.
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DUSKYN
Unsymmetric Sparse Matrix Norm Evaluation Using Skyline Storage
Scheme

Format

DUSKYN (n, au, iaudiag, nau, al, ialdiag, nal, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then au contains the upper triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Array AU is of
length at least nau, where nau is the envelope size of the upper triangular part of
A, including the diagonal. If istore = 3, then au contains the matrix A, stored in
the structurally symmetric, profile-in storage mode. In this case, array AU is of
length at least nau, where nau is the envelope size of the matrix A.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AU. iaudiag is of length at least n for the profile-in and the
structurally symmetric profile-in storage modes. iaudiag is of length at least
(n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then al contains the lower triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Storage is allocated
for the diagonal elements, though the elements themselves are not stored. Array
AL is of length at least nal, where nal is the envelope size of the lower triangular
part of A, including the diagonal. If istore = 3, then al is a dummy argument.
On exit, al is unchanged.
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ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AL. ialdiag is of length at least n for the profile-in storage
mode. ialdiag is of length at least (n+1) for the diagonal-out storage mode. If
istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the norm
evaluation.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk can be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYN. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.
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iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = inorm = 1

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYN routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode. if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric profile-in storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): inorm
On entry, defines if the matrix quantity to be evaluated:

inorm = 1 : 1-norm of A
inorm = 2 : 1-norm of A
inorm = 3 : Frobenius norm of A
inorm = 4 : Maximum absolute value of A

Default: inorm = 1
On exit, iparam(9) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the norm
evaluation.

rparam(1): anorm
On entry, is an unspecified variable.
On exit, rparam(1) contains the matrix quantity evaluated, as defined by the
value of IPARAM(9) = inorm.

iwrk
integer*4
On entry, an array of length at least n used for integer workspace.
On exit, iwrk contains information for use by the routine DUSKYN. This
information is not used by any other routine and can therefore be overwritten.

rwrk
real*8
On entry, an array of length at least n used for real workspace.
On exit, rwrk contains information used by the solver routine DUSKYN. This
information is not used by any other routine and can therefore be overwritten.
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ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYN.

Description

DUSKYN evaluates the following quantities for the unsymmetric matrixA:

• 1-norm of A:
jjAjj1 = max

j

X
i

jaij j

• 1-norm of A:
jjAjj1 = max

i

X
j

jaij j

• Frobenius-norm of A:
jjAjjF =

sX
i

X
j

jaij j2

• Largest absolute value of A:
max
i;j
jaij j

The last quantity in the above list is not a matrix norm. The quantity evaluated
is determined by the value of IPARAM(9) = inorm.

The real and integer workspace used by the routine DUSKYN does not contain
information for use by any other routines, and can therefore be overwritten.

As the routine DUSKYN requires the matrix A, it should be called prior to a call
to the factorization routine DUSKYF, which overwrites the elements of A by the
LDU factors.
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DUSKYF
Unsymmetric Sparse Matrix Factorization Using Skyline Storage
Scheme (Serial and Parallel Versions)

Format

DUSKYF (n, au, iaudiag, nau, al, ialdiag, nal, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then au contains the upper triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Array AU is of
length at least nau, where nau is the envelope size of the upper triangular part of
A, including the diagonal. If istore = 3, then au contains the matrix A, stored in
the structurally symmetric, profile-in storage mode. In this case, array AU is of
length at least nau, where nau is the envelope size of the matrix A.
On exit, if istore = 1 or 2, au contains the factors U and D of the LDU
factorization of the matrix A. If istore = 3, then au contains the factors L,
U and D of the LDU factorization of the matrix A. au must remain unchanged
between the call to the routine DUSKYF and any routines that use the factors
such as DUSKYS, DUSKYC, DUSKYR, and DUSKYX.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AU. iaudiag is of length at least n for the profile-in and the
structurally symmetric profile-in storage modes. iaudiag is of length at least
(n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then al contains the lower triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Storage is allocated
for the diagonal elements, though the elements themselves are not stored. Array
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AL is of length at least nal, where nal is the envelope size of the lower triangular
part of A, including the diagonal. If istore = 3, then al is a dummy argument.
On exit, if istore = 1 or 2, al contains the factor L of the LDU factorization of the
matrix A. If istore = 3, then al is undefined. al must remain unchanged between
the call to the routine DUSKYF and any routines that use the factors such as
DUSKYS, DUSKYC, DUSKYR, and DUSKYX.

ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AL. ialdiag is of length at least n for the profile-in storage
mode. ialdiag is of length at least (n+1) for the diagonal-out storage mode. If
istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+ 1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the LDU
factorization.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam� 100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array IPARAM. nrparam � 100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�4n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk may be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYF. The I/O unit must be opened in the
calling subprogram. If iounit � 0, then no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

• iolevel = 0 : fatal error messages only
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• iolevel = 1 : fatal errors, warnings and minimal information

• iolevel = 2 : detailed information and statistics

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ibeg = 0
IPARAM(10) = idet = 0
IPARAM(11) = ipvt = 0
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYF routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode; if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric profile-in storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): ibeg
On entry, defines if full or partial factorization is to be performed. If ibeg = 0,
then a full factorization is performed for rows and columns 1 through n. If ibeg
> 0, then a partial factorization is performed starting from rows and columns
ibeg + 1 through n, that is, rows and columns from 1 through ibeg have already
been factorized. Default: ibeg = 0.
On exit, iparam(9) is unchanged.

iparam(10): idet
On entry, defines if the determinant of the matrix A is to be calculated. If idet
= 0, then the determinant is not calculated; if idet = 1, the determinant is
calculated as det_base * 10 det_pwr. See RPARAM(4) and RPARAM(5). Default:
idet = 0.
On exit, iparam(10) is unchanged.

iparam(11): ipvt
On entry, defines if the factorization should continue when a small pivot, defined
by RPARAM(1), is encountered. If ipvt = 0 and the absolute value of the
pivot element is smaller than pvt_sml = RPARAM(1), then the factorization
process is stopped and control returned to the calling subprogram. If ipvt =
1 and a pivot smaller than RPARAM(1) in absolute value is encountered in
the factorization, the process continues. If ipvt = 2 and a pivot smaller than
RPARAM(1) in absolute value, is encountered in the factorization, it is replaced
by a predetermined value pvt_new = RPARAM(2), and the factorization is
continued. Default: ipvt = 0.
On exit, iparam(11) is unchanged.
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iparam(12): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(12) contains the location of the first pivot element, smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(12) = 0, then no such pivot element exists.

rparam
real*8
An array of length at least 100, containing the real parameters for the LDU
factorization.

rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml in absolute value is encountered in
the factorization process, then, depending on the value of ipvt = IPARAM(11),
the process either stops, continues or continues after the pivot is set equal to
pvt_new = RPARAM(2). pvt_sml > 0. Recommended value: 10�15� pvt_sml =
�1. Default: pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2 and
the pivot element is less than pvt_sml. pvt_new must be large enough to avoid
overflow when calculating the reciprocal of the pivot element.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller than
pvt_sml in absolute value. The location of this element is returned in ipvt_loc =
IPARAM(12).

rparam(4): det_base
On entry, an unspecified variable.
On exit, defines the base for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10 det_pwr. 1:0� det_base < 10.0.

rparam(5): det_pwr
On entry, an unspecified variable.
On exit, defines the power for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10 det_pwr.

iwrk
integer*4
On entry, an array of length at least 4n used for integer workspace.
On exit, iwrk contains information for use by routines that use the factorization
such as DUSKYS, DUSKYC, DUSKYR and DUSKYX. The first 4n elements of
iwrk should therefore be passed unchanged to these routines.

rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. rwrk is not used by the routine DUSKYF at
present but is reserved for future use. It can be a dummy variable.
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ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYF.

Description

DUSKYF obtains the factorization of the unsymmetric matrixA as:

A = LDU

where L is a unit lower triangular matrix, D is a diagonal matrix, and U is a unit
upper triangular matrix. The matrix A is stored in a skyline form, using either
the profile-in storage mode, the diagonal-out storage mode, or the structurally
symmetric profile-in storage mode.

The routine DUSKYF does not perform any pivoting to preserve the numerical
stability of the LDU factorization. It is therefore primarily intended for the
solution of systems that do not require pivoting for numerical stability, such
as diagonally dominant systems. Caution is urged when using this routine for
problems that require pivoting.

If a small pivot in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process
and returning to the calling program, continuing the factorization process, or
continuing after setting the pivot equal to some predetermined value, pvt_new.
The location of the first occurrence of a small pivot is returned in ipvt_loc and its
value in pvt_val.

In addition to the LDU factorization, the routine DUSKYF can be used to
obtain the determinant of A. A partial factorization can also be obtained by
appropriately setting the value of ibeg. If ibeg > 0, then factorization begins
at row and column ibeg + 1; the rows and columns from 1 to ibeg are assumed
to have been already factorized. When ibeg > 0, the determinant of A and the
statistics on the matrix are calculated from rows and columns ibeg + 1 through
n. If the factorization process is stopped at row i due to a small pivot, then the
determinant and the statistics on the matrix are evaluated for rows ibeg + 1
through (i� 1).

The data in the first 4n elements of the integer workspace array, IWRK, are
used in routines that use the LDU factorization, such as DUSKYS, DUSKYC,
and DUSKYR. This data must therefore remain unchanged between the call to
DUSKYF and any one of these routines. The real workspace array, RWRK, is not
used at present.

This routine is available in both serial and parallel versions. The routine names
and parameter list are identical for both versions. For information about using
the parallel library, see Chapter 4. For information about linking to the serial or
to the parallel library, see Chapter 5.
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DUSKYS
Unsymmetric Sparse Matrix Solve Using Skyline Storage Scheme

Format

DUSKYS (n, au, iaudiag, nau, al, ialdiag, nal, bx, ldbx, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, if istore = 1 or 2, au contains the factors U and D of the LDU
factorization of the matrix A. Array AU is of length at least nau, where nau is the
envelope size of the upper triangular part of A, including the diagonal. If istore
= 3, then au contains the LDU factorization of the matrix A. In this case, array
AU is of length at least nau, where nau is the envelope size of the matrix A. The
LDU factorization has been obtained by a prior call to the routine DUSKYF. au
must remain unchanged between calls to the routines DUSKYF and DUSKYS.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AU. iaudiag is of length at least n for the profile-in and the
structurally symmetric profile-in storage modes. iaudiag is of length at least
(n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, if istore = 1 or 2, al contains the factor L of the LDU factorization of
the matrix A. Array AL is of length at least nal, where nal is the envelope size
of the lower triangular part of A, including the diagonal. If istore = 3, then al
is a dummy argument. The LDU factorization is obtained from a prior call to
the routine DUSKYF. al must remain unchanged between calls to the routines
DUSKYF and DUSKYS.
On exit, al is unchanged.
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ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AL. ialdiag is of length at least n for the profile-in storage
mode. ialdiag is of length at least n+ 1 for the diagonal-out storage mode. If
istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then nal
is also the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

bx
real*8
On entry, a two-dimensional array BX of order ldbx by at least nbx, containing
the nbx right sides.
On exit, bx contains the solutions for the nbx systems.

ldbx
integer*4
On entry, the leading dimension of array BX. ldbx�n.
On exit, ldbx is unchanged.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the matrix
solve operation.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. As the real parameter array
is not used at present, nrparam may be unspecified.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�4n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk may be unspecified.
On exit, iparam(4) is unchanged.
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iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYF. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = itrans = 0

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYF routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode; if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric profile-in storage mode. The storage scheme used in the routines
DUSKYF and DUSKYS must be identical. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): itrans
On entry, defines the form of matrix used in the solution. If itrans = 0, the
system solved is AX = B; if itrans = 1, the system solved is ATX = B. Default:
itrans = 0.
On exit, iparam(9) is unchanged.

rparam
real*8
On entry, an array containing the real parameters for the solution.
On exit, rparam is unchanged. rparam is not used by the routine DUSKYS at
present, but is reserved for future use.

iwrk
integer*4
On entry, an array of length at least 4n used for integer workspace. The first 4n
elements of the array IWRK, generated by the routine DUSKYF, should be passed
unchanged to the routine DUSKYS.
On exit, the first 4n elements of iwrk are unchanged.
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rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. Presently, rwrk is not used by the routine
DUSKYS, but is reserved for future use. It can be a dummy variable.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYS.

Description

DUSKYS solves the system:

AX = B

or:
ATX = B

where A is an unsymmetric matrix stored in a skyline form, using either the
profile-in storage mode, the diagonal-out storage mode, or the structurally
symmetric profile-in storage mode; B is a matrix of nbx right sides and x is
the matrix of the corresponding nbx solution vectors. On entry to the routine
DUSKYS, the array BX contains the nbx right sides; on exit, these are
overwritten by the solution vectors. The variable itrans determines whether
the matrix A or AT is used in the solution process.

The matrix A has been factorized as:

A = LDU

by a prior call to the routine DUSKYF. L is a unit lower triangular matrix,
U is a unit upper triangular matrix, and D is a diagonal matrix. The first 4n
elements of the integer workspace array IWRK, generated by DUSKYF, contain
information for use by DUSKYS and therefore must remain unchanged between
the calls to the routines DUSKYF and DUSKYS. The real work array RWRK
is not used at present. The storage scheme used in the routines DUSKYF and
DUSKYS must be identical.

Once the factorization has been obtained, the routine DUSKYS can be used to
solve a system with multiple right sides, by setting nbx > 1. The routine can
also be called repeatedly, provided the first 4n elements of the work array IWRK
remain unchanged between calls.

13–92 Sparse Direct Solver Routines



DUSKYC

DUSKYC
Unsymmetric Sparse Matrix Condition Number Estimation Using
Skyline Storage Scheme

Format

DUSKYC (n, au, iaudiag, nau, al, ialdiag, nal, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the LDU factorization of the matrix
A. The factorization has been obtained by a previous call to the routine DUSKYF,
and au must remain unchanged between the calls to DUSKYF and DUSKYC. If
istore = 1 or 2, then au contains the upper triangular part, including the diagonal,
of the factorization of the matrix A, stored in the profile-in or diagonal-out mode,
respectively. Array AU is of length at least nau, where nau is the envelope size
of the upper triangular part of A, including the diagonal. If istore = 3, then
au contains the LDU factorization of the matrix A, stored in the structurally
symmetric, profile-in storage mode. In this case, array AU is of length at least
nau, where nau is the envelope size of the matrix A.
On exit, au is unchanged.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AU. iaudiag is of length at least n for the profile-in and the
structurally symmetric profile-in storage modes. iaudiag is of length at least
(n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the LDU factorization of the matrix
A. The factorization has been obtained by a previous call to the routine DUSKYF
and al must remain unchanged between the calls to the routines DUSKYF and
DUSKYC. If istore = 1 or 2, then al contains the lower triangular part, including
the diagonal, of the LDU factorization of the matrix A, stored in the profile-in or
diagonal-out mode, respectively. Storage is allocated for the diagonal elements,
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though the elements themselves are stored as part of au. Array AL is of length
at least nal, where nal is the envelope size of the lower triangular part of A,
including the diagonal. If istore = 3, then al is a dummy argument.
On exit, al is unchanged.

ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in array AL. ialdiag is of length at least n for the profile-in storage
mode. ialdiag is of length at least (n + 1) for the diagonal-out storage mode. If
istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+ 1)� 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the
condition number estimator.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�5n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the integer work array, IWRK. niwrk�2n.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYC. The I/O unit must be opened in the
calling subprogram. If iounit�0, then no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.
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iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = inorm = 1

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYC routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode; if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): inorm
On entry, defines the matrix quantity to be evaluated:

inorm = 1 : 1-norm
inorm = 2 : 1-norm

On exit, iparam(9) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the condition
number estimator.

rparam(1): anorm
On entry, rparam(1) contains the norm of the matrix A that has been obtained
by a prior call to the routine DUSKYN. If inorm = 1, then anorm must contain
the 1-norm of A. If inorm = 2, then anorm must contain the 1-norm of A.
On exit, rparam(1) is unchanged.

rparam(2): ainorm
On entry, rparam(2) is an unspecified variable.
On exit, rparam(2) contains the estimate of the norm of the matrix A�1 that
is evaluated by the routine DUSKYC. If inorm = 1, then ainorm contains the
estimate of the 1-norm of A�1. If inorm = 2, then ainorm contains the estimate
of the 1-norm of A�1.

rparam(3): rcond
On entry, rparam(3) is an unspecified variable.
On exit, rparam(3) contains the reciprocal of the estimate of the condition
number of the matrix A that is evaluated by the routine DUSKYC. If inorm =
1, then rcond contains the reciprocal of the estimate of the 1-norm condition
number of A. If inorm = 2, then rcond contains the reciprocal of the estimate of
the 1-norm condition number of A.
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iwrk
integer*4
On entry, an array of length at least 5n used for integer workspace. The first 4n
elements of the array IWRK generated by the routine DUSKYF must be passed
unchanged to the routine DUSKYC.
On exit, the first 4n elements of iwrk are unchanged. The next n elements are
used as integer workspace by the routine DUSKYC.

rwrk
real*8
On entry, an array of length at least 2n used for real workspace.
On exit, the first 2n elements of rwrk are overwritten.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYC.

Description

DUSKYC obtains the reciprocal of the estimate of the condition number of the
symmetric matrix A as:

rcond(A) =
1

jjAjj�jjA�1jj

where either the 1-norm or the1-norm is used.

The 1-norm of A�1 or A�T is obtained using the LAPACK routine DLACON, that
uses Higham’s modification [Higham 1988] of Hager’s method [Hager 1984]. This
routine uses reverse communication for the evaluation of matrix-vector products.
As the matrix under consideration is A�1 for the 1-norm case and A�T for the
1-norm case, routine DUSKYC requires calls to the routine DUSKYS. Hence
the first 4n elements of the integer work array, IWRK, which are generated by
the routine DUSKYF and used by the routine DUSKYS, must remain unchanged
between the calls to the routines DUSKYF and DUSKYC. The storage scheme
used in the routines DUSKYF and DUSKYC must be identical.
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DUSKYR
Unsymmetric Sparse Iterative Refinement Using Skyline Storage
Scheme

Format

DUSKYR (n, au, auf, iaudiag, nau, al, alf, ialdiag, nal, b, ldb, x, ldx, ferr, berr, nbx, iparam, rparam,
iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then au contains the upper triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Array AU is of
length at least nau, where nau is the envelope size of the upper triangular part of
A, including the diagonal. If istore = 3, then au contains the matrix A, stored in
the structurally symmetric, profile-in storage mode. In this case, array AU is of
length at least nau, where nau is the envelope size of the matrix A.
On exit, au is unchanged.

auf
real*8
On entry, if istore = 1 or 2, auf contains the factors U and D of the LDU
factorization of the matrix A. Array AUF is of length at least nau, where nau
is the envelope size of the upper triangular part of A, including the diagonal.
If istore = 3, then auf contains the LDU factorization of the matrix A. In this
case, array AUF is of length at least nau, where nau is the envelope size of the
matrix A. The LDU factorization has been obtained by a prior call to the routine
DUSKYF. auf must remain unchanged between calls to the routines DUSKYF
and DUSKYR.
On exit, auf is unchanged.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the arrays AU and AUF. iaudiag is of length at least n for the
profile-in and the structurally symmetric profile-in storage modes. iaudiag is of
length at least (n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
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On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then al contains the lower triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Storage is allocated
for the diagonal elements, though the elements themselves are not stored. Array
AL is of length at least nal, where nal is the envelope size of the lower triangular
part of A, including the diagonal. If istore = 3, then al is a dummy argument.
On exit, al is unchanged.

alf
real*8
On entry, if istore = 1 or 2, alf contains the factor L of the LDU factorization of
the matrix A. Array ALF is of length at least nal, where nal is the envelope size
of the lower triangular part of A, including the diagonal. If istore = 3, then alf
is a dummy argument. The LDU factorization is obtained from a prior call to
the routine DUSKYF. alf must remain unchanged between calls to the routines
DUSKYF and DUSKYR.
On exit, alf is unchanged.

ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the arrays AL and ALF. ialdiag is of length at least n for the profile-
in storage mode. ialdiag is of length at least (n+ 1) for the diagonal-out storage
mode. If istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

b
real*8
On entry, a two-dimensional array B of order ldb by at least nbx, containing the
nbx right sides.
On exit, b is unchanged.

ldb
integer*4
On entry, the leading dimension of array B. ldb�n.
On exit, ldb is unchanged.

x
real*8
On entry, a two-dimensional array X of order ldx by at least nbx, containing the
nbx solution vectors obtained after a call to the routine DUSKYS.
On exit, x contains the improved solutions obtained after iterative refinement.
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ldx
integer*4
On entry, the leading dimension of array X. ldx�n.
On exit, ldx is unchanged.

ferr
real*8
On entry, an array FERR of length at least nbx, whose elements are unspecified
variables.
On exit, ferr contains the estimated error bounds for each of the nbz solution
vectors.

berr
real*8
On entry, an array BERR of length at least nbx, whose elements are unspecified
variables.
On exit, berr contains the component-wise relative backward error for each of
the nbz solution vectors.

nbx
integer*4
On entry, the number of right sides.
On exit, nbx is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the
iterative refinement and error bounds calculation.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. As the real parameters array
is not used at present, nrparam may be unspecified.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�5n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�3n.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYR. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
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iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = itrans = 0
IPARAM(10) = itmax = 5

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYR routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode; if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric profile-in storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): itrans
On entry, defines the form of matrix used in the iterative refinement. If itrans =
0, the system refined is AX = B; if itrans = 1, the system refined is ATX = B.
Default: itrans = 0.
On exit, iparam(9) is unchanged.

iparam(10): itmax
On entry, defines the maximum number of iterations for the iterative refinement
process. Default: itmax = 5.
On exit, iparam(10) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the iterative
refinement and error bounds calculation.
On exit, rparam is unchanged. rparam is not used by the routine DUSKYR at
present, but is reserved for future use. It can be a dummy variable.

iwrk
integer*4
On entry, an array of length at least 5n used for integer workspace. The first 4n
elements of the array IWRK, generated by the routine DUSKYF, should be passed
unchanged to the routine DUSKYR.
On exit, the first 4n elements of iwrk are unchanged.

rwrk
real*8
On entry, an array of length at least 3n used for real workspace.
On exit, the first 3n elements of rwrk are overwritten.
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ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYR.

Description

DUSKYR obtains an improved solution to the system:

AX = B

or:
ATX = B

via iterative refinement. This is done by calculating the matrix of residuals R
using the matrix of solutions X̂ obtained from DUSKYS, and obtaining a new
matrix of solutions Xnew as follows:

For itrans = 0:
R = B � AX̂

�X = A�1R

and:
Xnew = X̂ + �X

For itrans = 1:
R = B � AT X̂

�X = A�TR

and:
Xnew = X̂ + �X

The process of iterative refinement therefore requires both the original matrix A
as well as the LDU factorization obtained via the routine DUSKYF. Since this
routine overwrites the matrix A by the factorization, a copy of the matrix must be
made before the call to DUSKYF. Further, both the right sides B and the solution
vectors X̂ are required during iterative refinement. Since the solution process in
the routine DUSKYS overwrites the right sides with the solution vectors, a copy
of the right sides must be made before the call to the routine DUSKYS.

In addition to the iterative refinement of the solution vectors, the routine
DUSKYR also provides the component-wise relative backward error, berr and the
estimated forward error bound, ferr, for each solution vector [Arioli, Demmel,
Duff 1989, Anderson et. al. 1992]. berr is the smallest relative change in any
entry of A or b that makes x̂ an exact solution. ferr bounds the magnitude of the
largest entry in x̂� xtrue divided by the magnitude of the largest entry in x̂.

The process of iterative refinement is continued as long as all of the following
conditions are satisfied [Arioli, Demmel, Duff 1989]:

• The number of iterations of the iterative refinement process is less than
IPARAM(10) = itmax.

• berr is reduced by at least a factor of 2 during the previous iteration.
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• berr is larger than the machine precision.

The routine DUSKYR is called after a call to the routine DSSKYF to obtain
the LDU factorization and a call to the routine DUSKYS to obtain the solution
x̂. The first 4n elements of the integer workspace array IWRK, generated by
DUSKYF, contain information for use by DUSKYR and therefore must remain
unchanged between the calls to the routines DUSKYF and DUSKYR. The storage
scheme used in the routines DUSKYF, DUSKYS, and DUSKYR must be identical.
The value of itrans must be the same in the calls to the routines DUSKYS and
DUSKYR.
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DUSKYD
Unsymmetric Sparse Simple Driver Using Skyline Storage Scheme

Format

DUSKYD (n, au, iaudiag, nau, al, ialdiag, nal, bx, ldbx, nbx, iparam, rparam, iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then au contains the upper triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Array AU is of
length at least nau, where nau is the envelope size of the upper triangular part of
A, including the diagonal. If istore = 3, then au contains the matrix A, stored in
the structurally symmetric, profile-in storage mode. In this case, array AU is of
length at least nau, where nau is the envelope size of the matrix A.
On exit, if istore = 1 or 2, au contains the factors U and D of the LDU
factorization of the matrix A. If istore = 3, then au contains the factors L,
U and D of the LDU factorization of the matrix A. au must remain unchanged
between the call to the routine DUSKYD and any routines that use the factors
such as DUSKYS, DUSKYC, and DUSKYR.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the arrays AU. iaudiag is of length at least n for the profile-in and
the structurally symmetric profile-in storage modes. iaudiag is of length at
least (n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.

nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then al contains the lower triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Storage is allocated
for the diagonal elements, though the elements themselves are not stored. Array
AL is of length at least nal, where nal is the envelope size of the lower triangular
part of A, including the diagonal. If istore = 3, then al is a dummy argument.
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On exit, if istore = 1 or 2, al contains the factor L of the LDU factorization of the
matrix A. If istore = 3, then al is undefined. al must remain unchanged between
the call to the routine DUSKYD and any routines that use the factors such as
DUSKYS, DUSKYC, and DUSKYR.

ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the array AL. ialdiag is of length at least n for the profile-in storage
mode. ialdiag is of length at least n+ 1 for the diagonal-out storage mode. If
istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

bx
real*8
On entry, a two-dimensional array BX of order nbx, containing the nbx right sides.
On exit, bx contains the solutions for the nbx systems.

ldbx
integer*4
On entry, the leading dimension of array BX. ldbx�n.
On exit, ldbx is unchanged.

nbx
real*4
On entry, the number of right sides.
On exit, nbx is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the simple
driver.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�4n.
On exit, iparam(3) is unchanged.
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iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. As the real work array
is not used at present, nrwrk can be unspecified.
On exit, iparam(4) is unchanged.

iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYD. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ipvt = 0
IPARAM(11) = itrans = 0
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYD routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If
istore = 1, the matrix A is stored using the profile-in storage mode; if istore
= 2, the matrix A is stored using the diagonal-out storage mode; if istore = 3,
the unsymmetric matrix A is stored using the structurally symmetric profile-in
storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): ipvt
On entry, defines if the factorization should continue when a small pivot, defined
by RPARAM(1), is encountered. If ipvt = 0 and the absolute value of the
pivot element is smaller than pvt_sml = RPARAM(1), then the factorization
process is stopped and control returned to the calling subprogram. If ipvt =
1 and a pivot smaller than RPARAM(1) in absolute value is encountered in
the factorization, the process continues. If ipvt = 2 and a pivot smaller than
RPARAM(1) in absolute value is encountered in the factorization, it is replaced
by a predetermined value pvt_new = RPARAM(2), and the factorization is
continued. Default: ipvt = 0.
On exit, iparam(9) is unchanged.
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iparam(10): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(10) contains the location of the first pivot element smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(10) = 0, then no such pivot element exists.

iparam(11): itrans
On entry, defines the form of matrix used in the solution. If itrans = 0, the
system solved is AX = B; if itrans = 1, the system solved is ATX = B. Default:
itrans = 0.
On exit, iparam(11) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the simple
driver.

rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml, in absolute value, is encountered in
the factorization process, then, depending on the value of ipvt = IPARAM(9),
the process either stops, continues or continues after the pivot is set equal to
pvt_new = RPARAM(2). pvt_sml > 0. Recommended value: 10�15� pvt_sml �1.
Default: pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2
and the pivot element is less than pvt_sml in absolute value. pvt_new should
be large enough to avoid overflow when calculating the reciprocal of the pivot
element.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller
than pvt_sml in absolute value. This element occurs at the location returned
in IPARAM(10). If no such pivot element is found, the value of pvt_val is
unspecified.

iwrk
integer*4
On entry, an array of length at least 4n used for integer workspace.
On exit, the first 4n elements of the array IWRK contain information generated
by the factorization routine DUSKYF. This information is required by routines
that use the factorization, such as DUSKYS, DUSKYC, and DUSKYR, and should
remain unchanged between the call to DUSKYD and any subsequent calls to one
of these routines.

rwrk
real*8
On entry, an array used for real workspace.
On exit, rwrk is unchanged. Presently, rwrk is not used by the routine DSSKYF.
It can be a dummy variable.
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ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYD.

Description

DUSKYD is a simple driver routine that factors and solves the system:

AX = B

or:
ATX = B

where A is an unsymmetric matrix stored in a skyline form, using either the
profile-in storage mode, the diagonal-out storage mode, or the structurally
symmetric profile-in storage mode; B is a matrix of nbx right sides and x is
the matrix of the corresponding nbx solution vectors. On entry to the routine
DUSKYS, the array BX contains the nbx right sides; on exit, these are
overwritten by the solution vectors. The variable itrans determines whether
the matrix A or AT is used in the solution process.

The matrix A is first factorized as:

A = LDU

by a call to the routine DUSKYF. L is a unit lower triangular matrix, U is a
unit upper triangular matrix, and D is a diagonal matrix. The routine DUSKYF
does not perform any pivoting to preserve the numerical stability of the LDU
factorization. It is therefore primarily intended for the solution of systems that
do not require pivoting for numerical stability, such as diagonally dominant
systems. Caution is urged when using this routine for problems that require
pivoting.

If a small pivot, in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process
and returning to the calling program, continuing the factorization process, or
continuing after setting the pivot equal to some predetermined value, pvt_new.
The location of the first occurrence of a small pivot is returned in ipvt_loc and its
value in pvt_val.

After the factorization has been obtained without any errors, the routine
DUSKYD calls the solve routine, DUSKYS, to solve the system. The call to the
routine DUSKYD can be followed by a call to the routines DUSKYS, DUSKYC,
and DUSKYR, provided that the first 4n elements of the integer workspace array
IWRK remain unchanged between calls. The real work array RWRK is not used
at present.
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DUSKYX
Unsymmetric Sparse Expert Driver Using Skyline Storage Scheme

Format

DUSKYX (n, au, auf, iaudiag, nau, al, alf, ialdiag, nal, b, ldb, x, ldx, ferr, berr, nbx, iparam, rparam,
iwrk, rwrk, ierror)

Arguments

n
integer*4
On entry, the order of the matrix A.
On exit, n is unchanged.

au
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then au contains the upper triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Array AU is of
length at least nau, where nau is the envelope size of the upper triangular part of
A, including the diagonal. If istore = 3, then au contains the matrix A, stored in
the structurally symmetric, profile-in storage mode. In this case, array AU is of
length at least nau, where nau is the envelope size of the matrix A.
On exit, au is unchanged.

auf
real*8
On entry, if RPARAM(9) = ifactor = 0, auf is an unspecified array of length at
least nau. If ifactor = 1, then auf contains information on the LDU factorization
of the matrix A. If istore = 1 or 2, auf contains the factors U and D of the LDU
factorization of the matrix A. Array AUF is of length at least nau, where nau
is the envelope size of the upper triangular part of A, including the diagonal.
If istore = 3, then auf contains the LDU factorization of the matrix A. In this
case, array AUF is of length at least nau, where nau is the envelope size of the
matrix A. The LDU factorization has been obtained by a prior call to the routine
DUSKYF.
On exit, if ifactor = 0, then auf contains information on the LDU factorization
of the matrix A. If istore = 1 or 2, auf contains the factors U and D of the LDU
factorization of the matrix A. Array AUF is of length at least nau, where nau
is the envelope size of the upper triangular part of A, including the diagonal. If
istore = 3, then auf contains the LDU factorization of the matrix A. In this case,
array AUF is of length at least nau, where nau is the envelope size of the matrix
A. If ifactor = 1, then auf is unchanged.

iaudiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the arrays AU and AUF (if ifactor = 0). iaudiag is of length at
least n for the profile-in and the structurally symmetric profile-in storage modes.
iaudiag is of length at least (n+ 1) for the diagonal-out storage mode.
On exit, iaudiag is unchanged.
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nau
integer*4
On entry, the number of elements stored in array AU. If istore = 1 or 2, then
nau is the envelope size of the upper triangular part of the matrix A. If istore
= 3, then nau is the envelope size of the matrix A. For the profile-in and the
structurally symmetric profile-in storage modes, nau = IAUDIAG(n). For the
diagonal-out storage mode, nau = IAUDIAG(n+1) - 1.
On exit, nau is unchanged.

al
real*8
On entry, an array containing information on the matrix A. If istore = 1 or 2,
then al contains the lower triangular part, including the diagonal, of the matrix
A, stored in the profile-in or diagonal-out mode, respectively. Storage is allocated
for the diagonal elements, though the elements themselves are not stored. Array
AL is of length at least nal, where nal is the envelope size of the lower triangular
part of A, including the diagonal. If istore = 3, then al is a dummy argument.
On exit, al is unchanged.

alf
real*8
On entry, if IPARAM(9) = ifactor = 0, alf is an unspecified array of length at
least nal. If ifactor = 1, then alf contains information on the LDU factorization of
the matrix A. On entry, if istore = 1 or 2, alf contains the factor L of the LDU
factorization of the matrix A. Array ALF is of length at least nal, where nal is the
envelope size of the lower triangular part of A, including the diagonal. If istore
= 3, then alf is a dummy argument. The LDU factorization is obtained from a
prior call to the routine DUSKYF.
On exit, if ifactor = 0, alf contains information on the LDU factorization of the
matrix A. If istore = 1 or 2, alf contains the factor L of the LDU factorization of
the matrix A. Array ALF is of length at least nal, where nal is the envelope size
of the lower triangular part of A, including the diagonal. If istore = 3, then alf is
a dummy argument. If ifactor = 1, then alf is unchanged.

ialdiag
integer*4
On entry, an array containing the pointers to the locations of the diagonal
elements in the arrays AL and ALF (if ifactor = 1). ialdiag is of length at least
n for the profile-in storage mode. ialdiag is of length at least (n + 1) for the
diagonal-out storage mode. If istore = 3, then ialdiag is a dummy argument.
On exit, ialdiag is unchanged.

nal
integer*4
On entry, the number of elements stored in array AL. If istore = 1 or 2, then
nal is the envelope size of the lower triangular part of the matrix A. For the
profile-in storage mode, nal = IALDIAG(n). For the diagonal-out storage mode,
nal = IALDIAG(n+ 1) - 1. If istore = 3, then nal is a dummy argument.
On exit, nal is unchanged.

b
real*8
On entry, a two-dimensional array B of order ldb by at least nbx, containing the
nbx right sides.
On exit, b is unchanged.

Sparse Direct Solver Routines 13–109



DUSKYX

ldb
integer*4
On entry, the leading dimension of array B. ldb�n.
On exit, ldb is unchanged.

x
real*8
On entry, a two-dimensional array X of order ldx by at least nbx, containing the
nbx solution vectors obtained after a call to the routine DUSKYS.
On exit, X contains the improved solutions obtained after iterative refinement.

ldx
integer*4
On entry, the leading dimension of array X. ldx�n.
On exit, ldx is unchanged.

ferr
real*8
On entry, an array FERR of length at least nbx, whose elements are unspecified
variables.
On exit, ferr contains the estimated error bounds for each of the nbx solution
vectors.

berr
real*8
On entry, an array BERR of length at least nbx, whose elements are unspecified
variables.
On exit, berr contains the component-wise relative backward error for each of
the nbx solution vectors.

nbx
integer*4
On entry, the number of right sides.
On exit, nbz is unchanged.

iparam
integer*4
An array of length at least 100, containing the integer parameters for the expert
driver.

iparam(1): niparam
On entry, defines the length of the array IPARAM. niparam�100.
On exit, iparam(1) is unchanged.

iparam(2): nrparam
On entry, defines the length of the array RPARAM. nrparam�100.
On exit, iparam(2) is unchanged.

iparam(3): niwrk
On entry, defines the size of the integer work array, IWRK. niwrk�5n.
On exit, iparam(3) is unchanged.

iparam(4): nrwrk
On entry, defines the size of the real work array, RWRK. nrwrk�3n.
On exit, iparam(4) is unchanged.
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iparam(5): iounit
On entry, defines the I/O unit number for printing error messages and
information from the routine DUSKYX. The I/O unit must be opened in the
calling subprogram. If iounit �0, no output is generated.
On exit, iparam(5) is unchanged.

iparam(6): iolevel
On entry, defines the message level that determines the amount of information
printed out to iounit, when iounit > 0:

iolevel = 0 : fatal error messages only
iolevel = 1 : error messages and minimal information
iolevel = 2 : error messages and detailed information

On exit, iparam(6) is unchanged.

iparam(7): idefault
On entry, defines if the default values should be used in arrays IPARAM and
RPARAM. If idefault = 0, then the following default values are assigned:

IPARAM(1) = niparam = 100
IPARAM(2) = nrparam = 100
IPARAM(6) = iolevel = 0
IPARAM(8) = istore = 1
IPARAM(9) = ifactor = 0
IPARAM(10) = idet = 0
IPARAM(11) = ipvt = 0
IPARAM(13) = itrans = 0
IPARAM(14) = itmax = 5
RPARAM(1) = pvt_sml = 10�12

If idefault = 1, then you must assign values to the above variables before the call
to the DUSKYX routine.
On exit, iparam(7) is unchanged.

iparam(8): istore
On entry, defines the type of storage scheme used for the skyline matrix. If istore
= 1, the unsymmetric matrix A is stored using the profile-in storage mode; if
istore = 2, the unsymmetric matrix A is stored using the diagonal-out storage
mode; if istore = 3, the unsymmetric matrix A is stored using the structurally
symmetric profile-in storage mode. Default: istore = 1.
On exit, iparam(8) is unchanged.

iparam(9): ifactor
On entry, defines if the matrix A has already been factored. If ifactor = 0, the
matrix is unfactored and arrays AUF and ALF are unspecified. If ifactor = 1, the
matrix has been factored by a prior call to the routine DUSKYF, and the arrays
AUF and array ALF contain the LDU factorization of A. Default: ifactor = 0.
On exit, iparam(9) is unchanged.

iparam(10): idet
On entry, defines if the determinant of the matrix A is to be calculated. If idet
= 0, then the determinant is not calculated; if idet = 1, the determinant is
calculated as det_base * 10det_pwr. See RPARAM(4) and RPARAM(5). If ifactor =
1, then IPARAM(10) is unspecified. Default: idet = 0.
On exit, iparam(10) is unchanged.
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iparam(11): ipvt
On entry, defines if the factorization should continue when a small pivot, defined
by RPARAM(1), is encountered. If ipvt = 0 and the absolute value of the
pivot element is smaller than pvt_sml = RPARAM(1), then the factorization
process is stopped and control returned to the calling subprogram. If ipvt =
1 and a pivot smaller than RPARAM(1) in absolute value is encountered in
the factorization, the process continues. If ipvt = 2 and a pivot smaller than
RPARAM(1) in absolute value is encountered in the factorization, it is replaced
by a predetermined value pvt_new = RPARAM(2), and the factorization is
continued. If ifactor = 1, then IPARAM(11) is unspecified. Default: ipvt = 0.
On exit, iparam(11) is unchanged.

iparam(12): ipvt_loc
On entry, an unspecified variable.
On exit, iparam(12) contains the location of the first pivot element smaller
in absolute value than pvt_sml. The pivot element is returned in pvt_val =
RPARAM(3). If iparam(12) = 0, then no such pivot element exists. If ifactor =
1, then IPARAM(12) is unspecified.

iparam(13): itrans
On entry, defines the form of matrix used in the iterative refinement. If itrans =
0, the system refined is AX = B; if itrans = 1, the system refined is ATX = B.
Default: itrans = 0.
On exit, iparam(13) is unchanged.

iparam(14): itmax
On entry, defines the maximum number of iterations for the iterative refinement
process. Default: itmax = 5.
On exit, iparam(14) is unchanged.

rparam
real*8
An array of length at least 100, containing the real parameters for the expert
driver.

rparam(1): pvt_sml
On entry, defines the value of the pivot element which is considered to be small.
If a pivot element smaller than pvt_sml, in absolute value, is encountered in
the factorization process, then, depending on the value of ipvt = IPARAM(11),
the process either stops, continues or continues after the pivot is set equal to
pvt_new = RPARAM(2). If ifactor = 1, then RPARAM (1) is unspecified. pvt_sml
> 0. Recommended value: 10�15� pvt_sml �1. Default: pvt_sml = 10�12.
On exit, rparam(1) is unchanged.

rparam(2): pvt_new
On entry, defines the value to which the pivot element must be set if ipvt = 2
and the pivot element is less than pvt_sml in absolute value. pvt_new should
be large enough to avoid overflow when calculating the reciprocal of the pivot
element. If ifactor = 1, then RPARAM(2) is unspecified.
On exit, rparam(2) is unchanged.

rparam(3): pvt_val
On entry, an unspecified variable.
On exit, rparam(3) contains the value of the first pivot element smaller than
pvt_sml in absolute value. The location of this element is returned in ipvt_loc =
IPARAM(12). If ifactor = 1, then the RPARAM(3) is unspecified.
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rparam(4): det_base
On entry, an unspecified variable.
On exit, defines the base for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr. If ifactor = 1, then RPARAM(4)
is unspecified. 1:0� det_base �10:0).

rparam(5): det_pwr
On entry, an unspecified variable.
On exit, defines the power for the determinant of the matrix A. If idet = 1, the
determinant is calculated as det_base * 10det_pwr. If ifactor = 1, then RPARAM(5)
is unspecified.

rparam(6): anorm
On entry, an unspecified variable.
On exit, rparam(6) contains the 1-norm or the1-norm of the matrix A.

rparam(7): ainorm
On entry, an unspecified variable.
On exit, rparam(7) contains the estimate of the 1-norm or the 1-norm of A�1.

rparam(8): rcond
On entry, an unspecified variable.
On exit, rparam(8) contains the reciprocal of the estimate of the 1-norm or the
1-norm condition number of the matrix A.

iwrk
integer*4
On entry, an array of length at least 5n used for integer workspace. If ifactor = 1,
then the first 4n elements of the array IWRK contain information generated by
the routine DUSKYF. If ifactor = 0, then this information is unspecified.
On exit, the first 4n elements of the array IWRK contain information generated
by the routine DUSKYF. This information is used by the routines DUSKYS and
DUSKYR, and should therefore remain unchanged between the call to the routine
DUSKYX and any subsequent call to the routines DUSKYS and DUSKYR.

rwrk
real*8
On entry, an array of length at least 3n used for real workspace.
On exit, the first 3n elements of rwrk are overwritten.

ierror
integer*4
On entry, an unspecified variable.
On exit, ierror contains the error flag. A value of zero indicates a normal exit
from the routine DUSKYX.

Description

DUSKYX is an expert driver routine that:

• Obtains the LDU factorization of the matrix A via a call to the routine
DUSKYF.

• If the factorization is successful, obtains the 1-norm (or 1-norm) condition
number estimate of the matrix A by a call to the routine DUSKYC.
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• If the reciprocal of the condition number estimate is greater than the machine
precision, DUSKYX uses the factorization to solve the system:

AX = B

or:
ATX = B

using the routine DUSKYS.

• Improves the solution X via iterative refinement and obtains the error bounds
using the routine DUSKYR.

DUSKYX first obtains the factorization of the symmetric matrix A as:

A = LDU

where L is a unit triangular matrix, D is a diagonal matrix and U is a unit
upper triangular matrix. The matrix A is stored in a skyline form, using either
the profile-in storage mode or the diagonal-out storage mode or the structurally
symmetric profile-in storage mode. If the matrix is already factored, as indicated
by ifactor, then this step is skipped.

The routine DUSKYF does not perform any pivoting to preserve the numerical
stability of the LDU factorization. It is therefore primarily intended for the
solution of systems that do not require pivoting for numerical stability, such
as diagonally dominant systems. Caution is urged when using this routine for
problems that require pivoting.

If a small pivot, in absolute value, pvt_sml, is encountered in the process of
factorization, you have the option of either stopping the factorization process and
returning to the calling subprogram, continuing the factorization process with
the small value of the pivot, or continuing after setting the pivot equal to some
predetermined value, pvt_new. The location of the first occurrence of a small
pivot is returned in ipvt_loc and its value in pvt_val.

In addition to the LDU factorization, the routine DUSKYF can be used to obtain
the determinant of A. If factorization process is stopped at row i due to a small
pivot, then the determinant is evaluated for rows 1 through (i� 1).

The routine DUSKYX does not allow a partial factorization of the matrix A. If a
partial factorization of A is required, the routine DUSKYF is recommended.

DUSKYC obtains the reciprocal of the estimate of the condition number of the
unsymmetric matrix A as:

rcond(A) =
1

jjAjj�jjA�1jj

If the system being solved is:
AX = B

the reciprocal of the 1-norm condition number estimate is calculated. If the
system being solved is:

ATX = B
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the reciprocal if the 1-norm of condition number estimate is calculated. The
1-norm of A�1 or A�T is obtained using the LAPACK routine DLACON, which
uses Higham’s modification [Higham 1988] of Hager’s method [Hager 1984].
If the reciprocal of the condition number estimate is larger than the machine
precision, the routine DUSKYX solves the system via a call to the routine
DUSKYS and then improves on the solution via iterative refinement. This is
done by calculating the matrix of residuals R using the matrix of solutions X̂
obtained from DUSKYS, and obtaining a new matrix of solutions Xnew as follows:

For itrans = 0:
R = B � AX̂

�X = A�1R

and:
Xnew = X̂ + �X

For itrans = 1:

R = B � AT X̂

�X = A�TR

and:
Xnew = X̂ + �X

In addition to the iterative refinement of the solution vectors, the routine
DUSKYX also provides the component-wise relative backward error, berr and the
estimated forward error bound, ferr, for each solution vector [Arioli, Demmel,
Duff 1989, Anderson et. al. 1992]. berr is the smallest relative change in any
entry of A or b that makes x̂ an exact solution. ferr bounds the magnitude of the
largest entry in x̂� xtrue divided by the magnitude of the largest entry in x̂.

The process of iterative refinement is continued as long as all of the following
conditions are satisfied [Arioli, Demmel, Duff 1989]:

• The number of iterations of the iterative refinement process is less than
IPARAM(10) = itmax.

• berr reduces by at least a factor of 2 during the previous iteration.

• berr is larger than the machine precision.

The first 4n elements of the integer workspace array IWRK generated by
DUSKYF, contain information for use by the routines DUSKYS and DUSKYR
and therefore must remain unchanged between the calls to the routine DUSKYX
and any subsequent calls to the routine DUSKYS and DUSKYR.
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14
Using the VLIB Routines

DXML includes a special set of routines that are similar to industry standard
array processor library routines. This special set of run-time library routines
operates on vectors—thus the name VLIB. This chapter provides information
about the following topics:

• Operations performed by the VLIB subprograms (Section 14.1)

• Vector storage (Section 14.2)

• Subprogram naming conventions (Section 14.3)

• Subprogram summaries (Section 14.4 )

• Calling VLIB subprograms (Section 14.5)

• Arguments used in the subprograms (Section 14.6)

• Error handling for VLIB subprograms (Section 14.7)

• A look at a VLIB subprogram and its use (Section 14.8)

A description of each VLIB subprogram follows this chapter.

14.1 VLIB Operations
VLIB operations work with vectors. These routines make it easier to port existing
array processor-oriented code, as well as provide enhanced performance, where
possible. Many simple array-oriented routines (such as adding a constant to each
element of an array) are more suitably coded by using the corresponding loop and
letting compiler optimizations improve performance. More complex routines are
suitably encapsulated in highly tuned routines such as those in VLIB.

For example, the VLIB routines include routines for transcendental functions. In
this case, the VLIB functions generally deliver performance 1.5 to 2 times faster
than the alternative of simply calling the appropriate run-time library function in
a loop. Careful code scheduling and algorithm design within the VLIB routines
take advantage of the fact that the input is a vector.

14.1.1 Types of Operations
The VLIB subprograms operate on only one vector (or possibly scalar), returning
one or more vectors (or possibly scalars) as output. The results of these operations
do not depend on the order in which the elements of the vector are processed.

14.1.2 Accuracy
The VLIB subprograms provide the same accuracy as the corresponding run-time
library routines.
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14.2 Vector Storage
For the VLIB subprograms, a vector is stored in a one-dimensional array. The
calling conventions for negative increment accesses to an array differ from BLAS1
conventions, but follow conventions used in existing array processor libraries. See
Section 14.2.2.

14.2.1 Defining a Vector in an Array
A vector is usually stored in a one-dimensional array. The elements of a vector
are stored in order, but the elements are not necessarily contiguous.

An array can be much larger than a vector that is stored in the array. The
storage of a vector is defined using three arguments in a DXML subprogram
argument list:

• Vector length: Number of elements in the vector

• Vector location: Base address of the vector in the array

• Stride: Space, or increment, between consecutive elements of the vector as
stored in the array

These three arguments together specify which elements of an array are selected
to become the vector.

14.2.1.1 Vector Length
To specify the length n of a vector, you specify an integer value for a length
argument, such as the n argument. The length of a vector can be less than the
length of the array that specifies the vector.

Vector length can also be thought of as the number of elements of the associated
array that a subroutine will process. Processing continues until n elements have
been processed.

14.2.1.2 Vector Location
The location of a vector is specified by the argument for the vector in the DXML
subprogram argument list. Usually, an array such as X is declared, for example,
X(1:20) or X(20). In this case, if you want to specify vector x as starting at the
first element of an array X, the argument is specified as X(1) or X. If you want to
specify vector x as starting at the fifth element of X, the argument is specified as
X(5).

However, in an array X that is declared as X(3:20), with a lower bound and an
upper bound given for the dimension, specifying vector x as starting at the fifth
element of X means that the argument is specified as X(7).

Most of the examples shown in this manual assume that the lower bound in each
dimension of an array is 1. Therefore, the lower bound is not specified, and the
value of the upper bound is the number of elements in that dimension. So, a
declaration of X(50) means X has 50 elements.

14.2.1.3 Stride of a Vector
The spacing parameter, called the increment or stride, indicates how to move
from the starting point through the array to select the vector elements from the
array. The increment is specified by an argument in the DXML subprogram
argument list, such as the incx argument.

The vector elements are stored in the array in the order x1; x2; :::; xn. An
increment of 1 indicates that the vector elements are contiguous in the array.
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14.2.1.4 Selecting Vector Elements from an Array
DXML VLIB routines use the stride to select elements from the array to construct
the vector composed of these elements. The stride associates consecutive elements
of the vector with equally spaced elements of the array.

14.2.2 Storing a Vector in an Array
Suppose X is a real one-dimensional array of ndim elements. Let vector x have
length n and let incx be the increment used to access the elements of vector x
whose components xi; i = 1; . . . ; n, are stored in X.

If incx > 0, and if the first element of the vector is specified at the first element
of the array, then xi is stored in the array location as shown in (14–1):

X(1 + (i� 1) � incx) (14–1)

Therefore, ndim, the number of elements in the array, should satisfy the condition
shown in (14–2):

ndim � 1 + (n� 1) � jincxj (14–2)

For the general case where the first element of the vector in the array is at the
point X(BP) rather than at the first element of the array, (14–3) can be used to
find the position of each vector element xi in a one-dimensional array.

For incx 6= 0, the position of xi is as follows:

X(BP + (i� 1) � incx) (14–3)

For example, suppose that BP = 3, ndim = 20, and n = 5. Then a value of incx = 2
implies that x1, x2, x3, x4, and x5 are stored in array elements X(3), X(5), X(7),
X(9), and X(11). Using BP = 11 and incx = �2 would mean that x1, x2, x3, x4, x5
were stored in X(11), X(9), X(7), X(5), X(3).

14.3 Naming Conventions
Table 14–1 shows the characters used in the names of the VLIB subprograms and
what the characters mean.

Table 14–1 Naming Conventions: VLIB Subprograms

Character Group Mnemonic Meaning

First group V Operates on a vector.

Second group A combination of
letters at the end
such as SIN or
RECIP

Type of computation such as sine (SIN) of a
vector or reciprocal (RECIP) of the elements
of a vector.

For example, the name VSQRT is the subprogram for computing the square-root
of the elements of a vector. All VLIB routines accept double-precision input
arrays and return double-precision output arrays.
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14.4 Summary of VLIB Subprograms
Table 14–2 summarizes the VLIB subprograms.

Table 14–2 Summary of VLIB Subprograms

Subprogram
Name Operation

VCOS Calculates, in double-precision arithmetic, the cosine of the elements of
a real vector.

VCOS_SIN Calculates, in double-precision arithmetic, the sine and cosine of the
elements of a real vector.

VEXP Calculates, in double-precision arithmetic, the exponential of the
elements of a real vector.

VLOG Calculates, in double-precision arithmetic, the natural logarithm of the
elements of a real vector.

VRECIP Calculates, in double-precision arithmetic, the reciprocal of the
elements of a real vector.

VSIN Calculates, in double-precision arithmetic, the sine of the elements of a
real vector.

VSQRT Calculates, in double-precision arithmetic, the square root of the
elements of a real vector.

14.5 Calling Subprograms
The VLIB subprograms consist of only subroutines.

14.6 Argument Conventions
The VLIB subprograms use a list of arguments to specify the requirements and
control the result of the subprogram. All arguments are required. The argument
list is in the same order for each subprogram:

• Arguments that describe the input and output vectors
The following arguments describe a vector:

The arguments x, y, and z define the location of the vectors x, y, and z in
the array. In the usual case, the argument x specifies the location in the
array as X(1), but the location can be specified at any other element of the
array. An array can be much larger than the vector that it contains.

The arguments incx, incy, and incz provide the increment between
the locations of the elements of the vector x, vector y, and vector z,
respectively.

• Arguments that define the number of elements to process
The n argument specifies the number of elements to process. If n � 0, the
output vector is unchanged.
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14.7 Error Handling
Where applicable, the elements of the input vector, to the VLIB routines, are
checked for the possibility that a later arithmetic exception will occur. Nonfinite
operands will trap within the routine. Other situations such as finite inputs
that are illegal or exception causing inputs to the corresponding RTL routine are
typically caught by detecting the offending input argument, and then calling the
corresponding RTL routine with the offending argument. Thus, essentially the
same exception behavior as with an RTL call is preserved.

14.8 A Look at a VLIB Subprogram
To understand the meaning of the arguments, consider the subroutine VSQRT.
VSQRT computes the square root of a real (n-element) vector x, and the result is
returned in the vector y. VSQRT has the arguments x, incx, y, incy and n.

For example, suppose that arrays X and Y are declared as follows:

REAL*8 X(-10:10), Y(41)

Then, the statements:

INCX = 1
INCY = 2
N = 21
CALL VSQRT(X,INCX,Y,INCY,N))

yield the following results:

Y(1) = SQRT(X(-10))
Y(3) = SQRT(X(-9)))
Y(5) = SQRT(X(-8))

.

.

.
Y(39) = SQRT(X(9))
Y(41) = SQRT(X(10))

This call to routine VSQRT obtains the same results as the following Fortran
code segment:

DO I = 1, 41, 2
Y(I) = SQRT( X( (I+1)/2 - 11) )

END DO

The argument x specifies the array X with 21 elements and specifies X(-10) as
the location of the vector x whose elements are embedded in X. Since n = 21, the
vector also has 21 elements. The length of the array X is the same as the length
of the vector x. The value of the argument incx = 1 specifies that the vector
elements are contiguous in the array. Since incy is 2, the square root of each
element of the array X is stored in array Y, beginning at Y(1), in the locations
Y(1), Y(3), Y(5), and so on.
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This section provides descriptions of the VLIB subprograms.





VCOS

VCOS
Vector Cosine

Format

VCOS (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by
cos(xi).

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VCOS function computes the cosine of n elements of a vector as follows:

yi  cos xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VCOS(X,INCX,Y,INCY, N)

This Fortran code shows how the cosine of all elements of the real vector x is
obtained and set equal to the corresponding elements of the vector y.
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VCOS_SIN
Vector Cosine and Sine

Format

VCOS_SIN (x, incx, y, incy, z, incz, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by
cos(xi).

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

z
real*8
On entry, a one-dimensional array Z of length at least (1 + (n� 1) � jinczj).
On exit, if n�0, z is unchanged. If n > 0, z is overwritten; zi is replaced by sin(xi).

incz
integer*4
On entry, the increment for the array Z.
On exit, incz is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VCOS_SIN function computes the cosine and sine of n elements of a vector
as follows:

yi  cos xi

zi  sin xi

where x, y and z are vectors. If both the sine and cosine of a vector are required,
this routine is faster than calling VCOS and VSIN separately.
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Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20), Z(20)
INCX = 1
INCY = 1
INCZ = 1
N = 20
CALL VCOS_SIN(X,INCX,Y,INCY,Z,INCZ, N)

This Fortran code shows how the cosine and sine of all elements of the real vector
x is obtained and set equal to the corresponding elements of the vectors y and z,
respectively.
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VEXP
Vector Exponential

Format

VEXP (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by
exp(xi).

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VEXP function computes the exponential of n elements of a vector as follows:

yi  exp xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VEXP(X,INCX,Y,INCY, N)

This Fortran code shows how the exponential of all elements of the real vector x
is obtained and set equal to the corresponding elements of the vector y.
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VLOG

VLOG
Vector Logarithm

Format

VLOG (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by
log(xi).

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VLOG function computes the natural logarithm of n elements of a vector as
follows:

yi  log xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VLOG(X,INCX,Y,INCY, N)

This Fortran code shows how the natural logarithm of all elements of the real
vector x is obtained and set equal to the corresponding elements of the vector y.
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VRECIP
Vector Reciprocal

Format

VRECIP (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by 1

xi
.

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VRECIP function computes the reciprocal of n elements of a vector as follows:

yi  
1

xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VRECIP(X,INCX,Y,INCY, N)

This Fortran code shows how the reciprocal of all elements of the real vector x is
obtained and set equal to the corresponding elements of the vector y.
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VSIN
Vector Sine

Format

VSIN (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by
sin(xi).

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VSIN function computes the sine of n elements of a vector as follows:

yi  sin xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VSIN(X,INCX,Y,INCY, N)

This Fortran code shows how the sine of all elements of the real vector x is
obtained and set equal to the corresponding elements of the vector y.
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VSQRT

VSQRT
Vector Square Root

Format

VSQRT (x, incx, y, incy, n)

Arguments

x
real*8
On entry, a one-dimensional array X of length at least (1 + (n � 1) � jincxj),
containing the elements of the vector x.
On exit, x is unchanged.

incx
integer*4
On entry, the increment for the array X.
On exit, incx is unchanged.

y
real*8
On entry, a one-dimensional array Y of length at least (1 + (n� 1) � jincyj).
On exit, if n�0, y is unchanged. If n > 0, y is overwritten; yi is replaced by

p
xi.

incy
integer*4
On entry, the increment for the array Y.
On exit, incy is unchanged.

n
integer*4
On entry, the number of elements to process.
On exit, n is unchanged.

Description

The VSQRT function computes the square root of n elements of a vector as
follows:

yi  
p
xi

where x and y are vectors.

Example

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
INCX = 1
INCY = 1
N = 20
CALL VSQRT(X,INCX,Y,INCY, N)

This Fortran code shows how the square root of all elements of the real vector x
is obtained and set equal to the corresponding elements of the vector y.
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15
Using Random Number Generator

Subprograms

DXML provides four random number generator (RNG) subprograms and two
auxiliary input subprograms for parallel applications. This chapter provides
information about the following topics:

• Standard Uniform RNG Subprograms (Section 15.2)

• Long Period Uniform RNG Subprogram (Section 15.3)

• Normally Distributed RNG Subprogram (Section 15.4)

• Input Subprograms for Parallel Applications Using RNG Subprograms
(Section 15.5)

• Summary of RNG Subprograms (Section 15.6)

• Error Handling (Section 15.7)

The reference descriptions of the RNG subprograms are at the end of this chapter.

15.1 Introduction
RNGs are an important part of many simulation programs and test procedures.
DXML provides the following RNG subprograms:

• Three subprograms that generate uniform[0,1] random number distributions
using algorithms based on the following:

— Multiplicative generators — See Section 15.2 for a description of the
RAN16807 subprogram.

— Linear congruential generators — See Section 15.2 for a description of the
RAN69069 subprogram.

— Combined multiplicative generators — See Section 15.3 for a description
of the RANL subprogram.

• One subprogram that generates normally distributed (N(0,1)) random
numbers using a sum-type algorithm based on the central limit theorem —
see Section 15.4 for a description of the RANL_NORMAL subprogram.

• Two subprograms that generate input for two other DXML RNG subprograms
when they are used in parallel computing applications. Both input
subprograms use a repeated squaring algorithm — see Section 15.5 for
descriptions of the RANL_SKIP2 and RANL_SKIP64 subprograms.
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15.2 Standard Uniform RNG Subprograms
DXML provides the RAN16807 and the RAN69069 subprograms to generate full
period (m or m � 1), sequences of uniform random numbers. Both subprograms
use a single precision, function call interface. DXML provides these RNGs since
they are perhaps the two most commonly used 32-bit generators.

The RAN16807 subprogram uses an algorithm that corresponds to the ‘‘minimal
standard generator’’ recommended by Park and Miller. For further information
see Section A.8. The algorithm is based on a multiplicative generator of the form:

s = a � s mod m, with s�1, and m = 2 � �31� 1.
x = s=m

The RAN69069 subprogram uses an algorithm that has been used in Digital
run-time libraries. The algorithm is based on a linear congruential generator of
the form:

s = a � s+ c mod m, with m = 2 � �32.
x = s=m

For a further discussion of this algorithm, refer to Knuth in Section A.8.

15.3 Long Period Uniform RNG Subprogram
DXML provides the RANL subprogram to generate very long period,
uniform random numbers. The RANL subprogram implements the combined
multiplicative algorithm introduced by L’Ecuyer. This algorithm uses two 32-bit
seeds and combines two separate generators to yield a very long period generator.

Here is a brief summary of the L’Ecuyer algorithm:

• The initial seeds s1; s2 are user input, with 1�s1�m1, 1�s2�m2. (See m1;m2
values in the following paragraphs.)

• In each step, updated values of s1; s2 are used to produce the next single
precision uniform random number u according to the following:

s1 = a1 � s1 (mod m1) m1 = 2147483563; a1 = 40014
s2 = a2 � s2 (mod m2) m2 = 2147483399; a2 = 40692

The algorithm then calculates z = s1 � s2 (mod (m1� 1)), and if z is 0,
puts z = m1� 1.

• Finally, the algorithm returns with u = z=m1.

The period can be shown to be (m1� 1)(m2� 1)=2.

DXML provides a subroutine call interface that can return a vector v(1),...,v(n) of
outputs. The vector form is very useful when speed is paramount.

For more information about the L’Ecuyer algorithm, see Section A.8.

For parallel applications using the RANL subprogram, DXML provides
two auxiliary, input subprograms that generate nonoverlapping streams of
independent random numbers. See Section 15.5 for more information.
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15.4 Normally Distributed RNG Subprogram
DXML provides the RANL_NORMAL subprogram to generate random normal
N(0,1) numbers. The RANL_NORMAL subprogram uses an algorithm based on
the central limit, which uses the following sum:

s = x1 + x2 + :::+ x12� 6:0

to approximate a normally distributed variate.

The number 12 is used, because the variance of a uniform[0,1] variable is 1/12.
Summing 12 uniform variables and subtracting their mean should yield an N(0,1)
variate. The RANL_NORMAL subprogram generalizes this procedure to an
arbitrary number of summands and then uses scaling to get back to an N(0,1)
result. The RANL_NORMAL subprogram overcomes the common drawback of
sum-type algorithms, in that it uses DXML’s vector call interface to the RANL
subprogram’s uniform[0,1] random number generator. Consequently, the RANL_
NORMAL subprogram can obtain, for example, 12 uniform random numbers per
subroutine call.

For parallel applications using the RANL_NORMAL subprogram, DXML provides
two auxiliary, input subprograms that generate nonoverlapping streams of
independent random numbers. See Section 15.5 for more information.

15.5 Input Subprograms for Parallel Applications Using RNG
Subprograms

For parallel applications using either the RANL or the RANL_NORMAL
subprograms, DXML provides two auxiliary, input subprograms RANL_SKIP2
and RANL_SKIP64. Both subprograms skip over a user specified number of
seeds. The RANL_SKIP2 subprogram skips a number 2 � �d (d�0) of seeds.
The RANL_SKIP64 subprogram skips an arbitrary 64-bit number d (d�0) of
seeds. These subprograms provide a way to generate nonoverlapping streams of
independent random numbers. Both subprograms use a well-known, repeated
squaring algorithm for computing:

a � �(2 � �k) � s mod m

This algorithm for finding the next seed skips over 2��k steps of the multiplicative
algorithm:

s = a � s mod m

The RANL_SKIP64 subprogram makes it convenient to generate nonoverlapping,
random sequences. This is useful in parceling out the same set of random
numbers to different numbers of processors in a multiprocessor environment.

15.6 Summary of RNG Subprograms
Table 15–1 gives a description of each RNG subprogram.
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Table 15–1 Summary of RNG Subprograms

Subprogram Name Description

RANL Generates a vector of uniform[0,1] random numbers.

RANL_SKIP2 Generates starting seeds for parallel, independent
streams of random numbers. Auxiliary subprogram
for parallel applications using RANL or RANL_NORMAL.

RANL_SKIP64 Generates starting seeds for parallel, independent
streams of random numbers by skipping forward a given
number d of seeds. Auxiliary subprogram for parallel
applications using RANL or RANL_NORMAL.

RANL_NORMAL Generates a vector of N(0,1) normally distributed random
numbers.

RAN69069 Generates single precision uniform[0,1] random numbers
using a = 69069 in the linear multiplicative algorithm.

RAN16807 Generates single precision uniform[0,1] random numbers
using a = 16807 in the "minimal standard" multiplicative
generator.

15.7 Error Handling
The RNG subprograms assume that input parameters are correct and provide no
feedback when errors occur.
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Random Number Generator Subprograms

This section provides descriptions of the random number generator (RNG)
subroutines.





RANL

RANL
Random Number Generator Based on L’Ecuyer Method

Format

RANL (s1, s2, v, n)

Arguments

s1
integer*4
On entry, s1�1, the first part of the two-integer seed.
On exit, s1 is changed according to n steps of the L’Ecuyer method.

s2
integer*4
On entry, s2�1, the second part of the two-integer seed.
On exit, s2, is changed according to n steps of the L’Ecuyer method.

v
real*4
On entry, a one-dimensional vector of n elements. v can be a scalar variable if
n=1.
On exit, contains n pseudorandom uniform[0,1] random numbers generated
according to the L’Ecuyer algorithm.

n
integer*4
On entry, a positive integer specifying the number of random numbers to store in
v(1),...,v(n).
On exit, unchanged.

Description

The RANL routine returns a vector of uniform[0,1] random numbers. After you
give arguments s1 and s2 initial values, you need not change these, except to
restart the sequence or to skip to a new subsequence.

For parallel applications using the RANL routine, DXML provides two auxiliary
input programs. Refer to the descriptions of RANL_SKIP64 and RANL_SKIP2.
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RANL

Example

c Monte Carlo Method
integer n,ndim,m
parameter ( m = 10 )
integer*4 s1,s2,i,k
real*4 pt(m),vol,sum,r,vol_all
print*,’nr. pts to use: ’
read*,n
print*,’ n= ’,n
print*,’ vol(10-d sphere) vol(10-d cube) ’
sum=0.0
s1=12345
s2=67890
do k=1,n

call ranl(s1,s2,pt ,m)
r=0.0
do i=1,m
r=r+pt(i)*pt(i)
end do

if(r.le.1.0)sum=sum+1.0
end do
vol = sum/n
vol_all = 2**m*vol
write(6,900)vol_all,2.0**m

900 format(1x,2x,f14.2,4x,f14.0)
end

This example computes the volume of a 10-dimensional sphere, using a Monte
Carlo technique. The program generates n points in the 10-dimensional unit
quadrant and then counts the number of these n points inside the 10-dimensional
unit sphere to yield a value for sum. Next, the program divides sum, by the total
n points inside the unit quadrant to approximate the volume of the spherical
quadrant, vol . There are 2 � �10 such quadrants. Therefore, the program
multiplies vol by 2 � �10 to approximate the total volume, vol_all , of the
10-dimensional sphere.

The exact value of vol_all is 2.55 to 2 decimals. With 10 million points, this
program yields 2.56. This is in marked contrast to the case in lower dimensions
where the volume of the unit sphere is nearly equal to the volume of the
containing cube.

See also the example for RANL_SKIP2.
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RANL_SKIP2

RANL_SKIP2
Routine to Skip Forward a Given Number of Seeds for the RANL and
RANL_NORMAL Random Number Generators

Format

RANL_SKIP2 (d, s1, s2, s1_new, s2_new)

Arguments

d
integer*4
On entry, an integer d>0 specifying the number 2 � �d of seeds to skip starting at
(s1,s2) in the L’Ecuyer algorithm.

s1
integer*4
On entry, a starting seed s1�1.

s2
integer*4
On entry, a starting seed s2�1.

s1_new
integer*4
On exit, a new starting seed 2 � �d iterations away from s1.

s2_new
integer*4
On exit, a new starting seed 2 � �d iterations away from s2.

Description

The RANL_SKIP2 routine is used to get starting seeds for parallel, independent
streams of random numbers. The new starting seeds are computed using the
following algorithms:

s1_new = a1 � �(2 � �d) � s1 mod m1
s2_new = a2 � �(2 � �d) � s2 mod m2

Where a1; a2;m1;m2 are the constants defining the L’Ecuyer method.

Example

integer nprocs,n,hop
parameter (nprocs=4)
parameter (n=16384,hop=14)
integer*4 j,k
real*4 v(n,nprocs)
integer*4 s1val(nprocs),s2val(nprocs)
real*4 sum1(nprocs)

c get seeds (2**hop apart) for separate streams
s1val(1)=1
s2val(1)=1
do j=2,nprocs
call ranl_skip2(hop,s1val(j-1),s2val(j-1),s1val(j),s2val(j))
end do
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RANL_SKIP2

c parallel calls to ranl can be done, for example, with KAP directives:
C*$* ASSERT CONCURRENT CALL
C*$* ASSERT DO (CONCURRENT)

do j=1,nprocs
call ranl(s1val(j),s2val(j),v(1,j),n)
sum1(j)=0.0
do k=1,n

sum1(j)=sum1(j)+v(k,j)
end do

end do

print*,’ per-stream averages’
do j=1,nprocs

print*,sum1(j)/n
end do

end

This example calls RANL_SKIP2 to set up separate seeds for 4 streams,
(nprocs=4 ), from RANL. It computes the averages per stream.
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RANL_SKIP64

RANL_SKIP64
Routine to Skip Forward a Given Number d of Seeds for the RANL
and RANL_NORMAL Random Number Generators

Format

RANL_SKIP64 (d, s1, s2, s1_new, s2_new)

Arguments

d
integer*8
On entry, an integer d �0 specifying the number d of seeds to skip starting at
(s1,s2) in the L’Ecuyer algorithm.

s1
integer*4
On entry, a starting seed s1�1.

s2
integer*4
On entry, a starting seed s2�1.

s1_new
integer*4
On exit, a new starting seed d iterations away from s1.

s2_new
integer*4
On exit, a new starting seed d iterations away from s2.

Description

The RANL_SKIP64 routine is used to get starting seeds for parallel, independent
streams of random numbers. The new starting seeds are computed using the
following algorithms:

s1_new = a1 � �d � s1 mod m1
s2_new = a2 � �d � s2 mod m2

Where a1; a2;m1;m2 are the constants defining the L’Ecuyer method.

Example

integer nprocs,n
integer*8 hop
parameter (nprocs=4)
parameter (n=16384,hop=1000000)
integer*4 j,k,nsum
real*4 v(n,nprocs)
integer*4 s1val(nprocs),s2val(nprocs)
real*4 sum1(nprocs)
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RANL_SKIP64

c get seeds (hop apart) for separate streams
s1val(1)=1
s2val(1)=1
nsum=12
do j=2,nprocs
call ranl_skip64(hop,s1val(j-1),s2val(j-1),s1val(j),s2val(j))
end do

c parallel calls to ranl_normal can be done, for example, with KAP directives:
C*$* ASSERT CONCURRENT CALL
C*$* ASSERT DO (CONCURRENT)

do j=1,nprocs
call ranl_normal(s1val(j),s2val(j),nsum,v(1,j),n)
sum1(j)=0.0
do k=1,n

sum1(j)=sum1(j)+v(k,j)
end do

end do

print*,’ per-stream averages’
do j=1,nprocs

print*,sum1(j)/n
end do

end

This example calls RANL_SKIP64 to set up separate seeds for 4 streams,
(nprocs=4 ), from RANL_NORMAL. It computes the averages per stream.

15–12 RNG Routines



RANL_NORMAL

RANL_NORMAL
Routine to Generate Normally Distributed Random Numbers Using
Summation of Uniformly Distributed Random Numbers

Format

RANL_NORMAL (s1, s2, nsum, vnormal, n)

Arguments

s1
integer*4
On entry, s1�1, the first part of the two-integer seed.
On exit, s1 is changed according to n�nsum steps of the L’Ecuyer method.

s2
integer*4
On entry, s2�1, the second part of the two-integer seed.
On exit, s2 is changed according to n�nsum steps of the L’Ecuyer method.

nsum
integer*4
On entry, number of uniform[0,1] numbers to sum to get each N(0,1) output.

vnormal
real*4
On exit, a vector vnormal(1),...,vnormal(n) of N(0,1) normally distributed
numbers.

n
integer*4
On entry n�1 specifies the number of N(0,1) results to return in
vnormal(1),...,vnormal(n).

Description

The RANL_NORMAL routine returns a vector of N(0,1) normally distributed
random numbers.

For parallel applications using the RANL_NORMAL routine, DXML provides
two auxiliary input programs. Refer to the descriptions of RANL_SKIP64 and
RANL_SKIP2.

Example

See the example for RANL_SKIP64.
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RAN69069

RAN69069
Routine to Generate Single Precision Random Numbers Using
a=69069 and m=2**32

Format

RAN69069 (s)

Function Value

ran69069
real*4

The uniform[0,1] value returned.

Arguments

s
integer*4
On input, a seed s being set initially or left unchanged from a previous iteration.
On exit, the updated seed.

Description

The RAN69069 routine computes updated seeds using the linear multiplicative
algorithm as follows:

s = 69069 � s+ 1; mod 2 � �32
Returns s � 2:0 � �(�32), as its uniform[0,1] output.

Example

integer ix,iy,i,j,iseed,nsteps,nwalks
real*4 x

c random walk: go N E S W each with probability 0.25
nsteps = 1000000
nwalks = 10
iseed = 1234

do j=1,nwalks
ix=0
iy=0
do i = 1, nsteps
x=ran69069(iseed)
if(x.le.0.25)then

ix=ix+1
else if(x.le.0.5)then

iy=iy+1
else if(x.le.0.75)then

ix=ix-1
else

iy=iy-1
end if
end do
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print*,’final position ’,ix,iy
end do
end

This example simulates a random walk using RAN69069. A particle starts at
(0,0) and proceeds N, E, S, or W. with probability 0.25 each.

RNG Routines 15–15



RAN16807

RAN16807
Routine to Generate Single Precision Random Numbers Using
a=16807 and m=2**31-1

Format

RAN16807 (s)

Function Value

ran16807
real*4

The uniform[0,1] value returned.

Arguments

s
integer*4
On entry, the seed s�1.
On exit, the updated seed.

Description

The RAN16807 routine implements the ‘‘minimal standard’’ or Lehmer
multiplicative generator to compute updated seeds using a = 16807, m = 2��31�1,
as follows:

s = 16807 � s mod 2 � �31� 1

Returns s � (1:0=m) as its uniform[0,1] output.

Example

integer ix,iy,i,j,iseed,nsteps,nwalks
real*4 x

c random walk: go N E S W each with probability 0.25
nsteps = 1000000
nwalks = 10
iseed = 1234

do j=1,nwalks
ix=0
iy=0
do i = 1, nsteps
x=ran16807(iseed)
if(x.le.0.25)then

ix=ix+1
else if(x.le.0.5)then

iy=iy+1
else if(x.le.0.75)then

ix=ix-1
else

iy=iy-1
end if
end do
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print*,’final position ’,ix,iy
end do
end

This example simulates a random walk using RAN16807. A particle starts at
(0,0) and proceeds N, E, S, or W. with probability 0.25 each.
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16
Using Sort Subprograms

This chapter provides information about DXML quick sort and general purpose
sort subprograms as follows:

• Quick Sort Subprograms (Section 16.1)

• General Purpose Sort (Section 16.2)

• Naming Conventions (Section 16.3)

• Summary of Sort Subprograms (Section 16.4)

• Error Handling (Section 16.5)

The reference descriptions of the sort subprograms are at the end of this chapter.

16.1 Quick Sort Subprograms
The _SORTQ and _SORTQX subprograms use a quick sort algorithm to sort
a vector of data. In the case of _SORTQX, the data vector is indexed. Both
subprograms implement the quick sort algorithm by recursing until the partition
size is less than 16. At that point, _SORTQ uses a simple replacement sort to
sort the elements of the partition, while _SORTQX uses a modified insertion
sort to sort the elements of the partition. Subprogram _SORTQX permutes only
elements of the index vector, leaving the data vector unchanged.

16.2 General Purpose Sort Subprograms
The GEN_SORT subprogram is a general purpose, in memory, sort routine that
uses a radix algorithm to sort the data. The GEN_SORTX subprogram is a
general purpose, in memory, indexed sort routine that uses an indexed radix
algorithm to sort the data.

16.3 Naming Conventions
Table 16–1 shows the characters used in the names of the quick sort subprograms
and what the characters mean.
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Table 16–1 Naming Conventions: _SORTQ_ Subprograms

Character Group Mnemonic Meaning

First group I Integer

S Single-precision real

D Double-precision real

Second group SORTQ Quick sort algorithm

Third group X Refers to indexed quick sort

For example, the name DSORTQX is the subprogram for performing an indexed
quick sort on a vector of double-precision data.

16.4 Summary of Sort Subprograms
Table 16–2 gives a description of each sort subprogram.

Table 16–2 Summary of Sort Subprograms

Subprogram
Name Description

ISORTQ Quick sorts the elements of a vector of integer data.

SSORTQ Quick sorts the elements of a vector of single-precision data.

DSORTQ Quick sorts the elements of a vector of double-precision data.

ISORTQX Performs an indexed quick sort of a vector of integer data.

SSORTQX Performs an indexed quick sort of a vector of single-precision data.

DSORTQX Performs an indexed quick sort of a vector of double-precision data.

GEN_SORT Performs a general purpose, in memory, sort routine.

GEN_SORTX Performs a general purpose, in memory, sort of an indexed vector of
data.

16.5 Error Handling
The sort subprograms assume that input parameters are correct and provide no
feedback when errors occur.
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Sort Subprograms

This section provides descriptions of the Sort subprograms.





ISORTQ, SSORTQ, DSORTQ

ISORTQ, SSORTQ, DSORTQ
Sorts the Elements of a Vector

Format

{I,S,D}SORTQ (order, n, x, incx)

Arguments

order
character*4
On entry, order specifies the operation to be performed as follows:

If order = ’A’ or ’a’, x is sorted in ascending sequence.
If order = ’D’ or ’d’, x is sorted in descending sequence.

On exit, order is unchanged.

n
integer*4
On entry, the length of vector x.
On exit, n is unchanged.

x
integer*4 | real*4 | real*8
On entry, a length n vector of data to be sorted.
On exit, x is overwritten by a length n vector of sorted data.

incx
integer*4
On entry, incx specifies the distance between elements of vector x. The argument
incx must be positive.
On exit, incx is unchanged.

Description

The _SORTQ routines sort a vector of data using the quick sort algorithm. Data
is sorted in ascending order if order is ’A’ or ’a’ and in descending order if order
is ’D’ or ’d’. The quick sort algorithm is implemented by recursing until the
partition size is less than 16. At that point, a simple replacement sort is used to
sort the elements of the partition.

Example

REAL*4 DATA( 100 )
N = 100
CALL SSORTQ( ’A’,N,DATA,1 )

This Fortran code sorts a 100 element single real vector.
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ISORTQX, SSORTQX, DSORTQX
Performs an Indexed Sort of a Vector

Format

{I,S,D}SORTQX (order, n, x, incx, index)

Arguments

order
character*1
On entry, order specifies the operation to be performed as follows:

If order = ’A’ or ’a’, x is sorted in ascending sequence.
If order = ’D’ or ’d’, x is sorted in descending sequence.

On exit, order is unchanged.

n
integer*4
On entry, the length of vector x.
On exit, n is unchanged.

x
integer*4 | real*4 | real*8
On entry, a length n vector of data to be sorted.
On exit, x is unchanged.

incx
integer*4
On entry, incx specifies the distance between elements of vector x. The argument
incx must be positive.
On exit, incx is unchanged.

index
integer*4
On entry, the content of index is ignored.
On exit, index contains a permuted vector of indices that may be used to access
data vector x in the sorted order specified by order.

Description

The _SORTQX routines sort an indexed vector of data using the quick sort
algorithm. Data is sorted in ascending order if order is ’A’ or ’a’ and in
descending order if order is ’D’ or ’d’. The quick sort algorithm is implemented
by recursing until the partition size is less than 16. At that point, a modified
insertion sort is used to sort the elements of the partition. Only elements of the
index vector are permuted, the data vector is left unchanged.
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Example

REAL*4 DATA( 100 ),INDEX( 100 )
N = 100
CALL SSORTQX( ’A’,N,DATA,1,INDEX )
DO I=1,N

PRINT *,DATA( INDEX(I) )
ENDDO

This Fortran code sorts a 100 element single real vector and prints its contents in
sorted order.
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GEN_SORT
Sorts the Elements of a Vector

Format

GEN_SORT (order, type, size, n, x, incx, y, incy)

Arguments

order
character*1
On entry, order specifies the operation to be performed as follows:

If order = ’A’ or ’a’, x is sorted in ascending sequence.
If order = ’D’ or ’d’, x is sorted in descending sequence.

On exit, order is unchanged.

type
character*1
On entry, type specifies the data type of vectors x and y. The following types are
valid:

If type = ’B’ or ’b’, binary (unsigned integer)
If type = ’C’ or ’c’, character string
If type = ’I’ or ’i’, integer (signed)
If type = ’L’ or ’l’, logical - Fortran .TRUE. or .FALSE.
If type = ’R’ or ’r’, IEEE floating point
If type = ’V’ or ’v’, VAXG floating point

On exit, type is unchanged.

size
integer*4
On entry, size specifies the size, in bytes, of each element of data vectors x and y.
Valid combinations of type and size include:

If type = ’B’ or ’b’ - size = { 1,2,4,8 }
If type = ’C’ or ’c’ - size = { 0 < size < 65536 }
If type = ’I’ or ’i’ - size = { 1,2,4,8 }
If type = ’L’ or ’l’ - size = { 1,2,4,8 }
If type = ’R’ or ’r’ - size = { 4,8,16 }
If type = ’V’ or ’v’ - size = { 4,8 }

On exit, size is unchanged.

n
integer*4
On entry, the length of the x and y vectors.
On exit, n is unchanged.

x
data vector
On entry, a length n vector of data to be sorted. Each element of vector x is of
type and size specified.
On exit, vector x is unchanged, unless it overlaps vector y.
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incx
integer*4
On entry, incx specifies the distance between elements of vector x. The argument
incx must be positive.
On exit, incx is unchanged.

y
data vector
On entry, y is ignored.
On exit, vector y is overwritten with sorted data. Each element of vector y is of
type and size specified.

incy
integer*4
On entry, vector incy specifies the distance between elements of vector y. The
argument incy must be positive.
On exit, incy is unchanged.

Description

GEN_SORT is a general purpose, in memory, sort routine. GEN_SORT accepts
the following Fortran data types:

INTEGER*1, INTEGER*2, INTEGER*4, INTEGER*8
LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGICAL*8
REAL*4, REAL*8, REAL*16
CHARACTER(*)

GEN_SORT also accepts unsigned ‘‘binary’’ integers of 1, 2, 4, or 8 byte sizes.

A radix algorithm is employed to sort the data. For all data types except
REAL*16 and CHARACTER*(*), an N*16 byte work space is aquired from heap
storage. For REAL*16 data, a work space of N*24 bytes is taken from heap
storage. Heap work space required for CHARACTER data is N*((SIZE-1)/8+3)*8
bytes in size.

Example

REAL*4 DATA( 100 )
N = 100
CALL GEN_SORT( ’A’,’R’,4,N,DATA,1,DATA,1 )

This Fortran code sorts a 100 element single-precision real vector in place.
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GEN_SORTX
Sorts the Elements of an Indexed Vector

Format

GEN_SORTX (order, status, type, size, n, x, incx, index)

Arguments

order
character*1
On entry, order specifies the operation to be performed as follows:

If order = ’A’ or ’a’, x is sorted in ascending sequence.
If order = ’D’ or ’d’, x is sorted in descending sequence.

On exit, order is unchanged.

status
character*1
On entry, status specifies the operation to be performed as follows:

If status = ’N’ or ’n’, the index vector is new (empty) on input. Elements of
data vector x are initially accessed in sequential order.
If status = ’O’ or ’o’, the index vector is old (full) on input. Elements of data
vector x are initially accessed in the order specified by the index vector.

On exit, status is unchanged.

type
character*1
On entry, type specifies the data type of vectors x and y. The following types are
valid:

If type = ’B’ or ’b’, binary (unsigned integer)
If type = ’C’ or ’c’, character string
If type = ’I’ or ’i’, integer (signed)
If type = ’L’ or ’l’, logical - Fortran .TRUE. or .FALSE.
If type = ’R’ or ’r’, IEEE floating point
If type = ’V’ or ’v’, VAXG floating point

On exit, type is unchanged.

size
integer*4
On entry, size specifies the size, in bytes, of each element of data vector x. Valid
combinations of type and size include:

If type = ’B’ or ’b’ - size = { 1,2,4,8 }
If type = ’C’ or ’c’ - size = { 0 < size < 65536 }
If type = ’I’ or ’i’ - size = { 1,2,4,8 }
If type = ’L’ or ’l’ - size = { 1,2,4,8 }
If type = ’R’ or ’r’ - size = { 4,8,16 }
If type = ’V’ or ’v’ - size = { 4,8 }

On exit, size is unchanged.
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n
integer*4
On entry, the length of the x vector.
On exit, n is unchanged.

x
data vector
On entry, a length n vector of data to be sorted. Each element of vector x is of
type and size specified.
On exit, vector x is unchanged.

incx
integer*4
On entry, incx specifies the distance between elements of vector x. The argument
incx must be positive.
On exit, incx is unchanged.

index
integer*4
On entry, vector index is ignored if status is ’N’ or ’n’, and used as an index
vector for data vector x if status is ’O’ or ’o’.
On exit, vector index is overwritten by a permuted vector of indices that may be
used to access data vector x in the sorted order specified by order.

Description

GEN_SORTX is a general purpose, in memory, indexed sort routine. GEN_
SORTX accepts the following Fortran data types:

INTEGER*1, INTEGER*2, INTEGER*4, INTEGER*8
LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGICAL*8
REAL*4, REAL*8, REAL*16
CHARACTER(*)

GEN_SORTX also accepts unsigned ‘‘binary’’ integers of 1, 2, 4, or 8 byte sizes.

An indexed radix algorithm is employed to sort the data. For all data types
except REAL*16 and CHARACTER*(*), an N*16 byte work space is aquired from
heap storage. For REAL*16 data, a work space of N*24 bytes is taken from heap
storage. Heap work space required for CHARACTER data is N*((SIZE-1)/8+3)*8
bytes in size.

GEN_SORTX is stable and may be used to perform multikey record sorts.

Example

REAL DATA( 100 )
INTEGER INDEX( 100 )
N = 100
CALL GEN_SORTX( ’Descend’,’New’,’Real’,SIZEOF(DATA(1)),N,DATA,1,INDEX )
DO I=1,N

PRINT *,DATA(I),DATA( INDEX(I) )
ENDDO

This Fortran code sorts a 100 element single-precision real vector by index,
leaving the data unchanged. Unsorted and sorted data are printed in adjacent
columns.
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BLAS2 errors, 8–24
BLAS3 errors, 9–9

C
C language

calling DXML routines, 3–5
iterative solver example, 12–44

online, 12–30
matrix-vector calculation example, 3–6
skyline solver example, 13–34

online, 13–19
C++ language

iterative solver example, 12–50
online, 12–30

skyline solver example, 13–41
online, 13–19

Calling DXML, 1–2
CAXPY, 6–21
CAXPYI, 7–13
CCONV_NONPERIODIC, 11–91
CCONV_NONPERIODIC_EXT, 11–97
CCONV_PERIODIC, 11–93
CCONV_PERIODIC_EXT, 11–100
CCOPY, 6–23
CCORR_NONPERIODIC, 11–94
CCORR_NONPERIODIC_EXT, 11–102, 11–105
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CCORR_PERIODIC, 11–96
CDOTC, 6–25
CDOTCI, 7–15
CDOTU, 6–25
CDOTUI, 7–15
CFFT, 11–39
CFFT_2D, 11–48
CFFT_3D, 11–57
CFFT_APPLY, 11–44
CFFT_APPLY_2D, 11–53
CFFT_APPLY_3D, 11–62
CFFT_APPLY_GRP, 11–70
CFFT_EXIT, 11–47
CFFT_EXIT_2D, 11–56
CFFT_EXIT_3D, 11–65
CFFT_EXIT_GRP, 11–73
CFFT_GRP, 11–66
CFFT_INIT, 11–42
CFFT_INIT_2D, 11–51
CFFT_INIT_3D, 11–60
CFFT_INIT_GRP, 11–69
CGBMV, 8–29
CGEMA, 9–15
CGEMM, 9–17
CGEMS, 9–20
CGEMT, 9–22
CGEMV, 8–32
CGERC, 8–35
CGERU, 8–35
CGTHR, 7–17
CGTHRS, 7–18
CGTHRZ, 7–20
CHARACTER data

definition, 2–1
description, 2–2

CHBMV, 8–37
CHEMM, 9–24
CHEMV, 8–46
CHER, 8–49
CHER2, 8–51
CHER2K, 9–34
CHERK, 9–29
CHPMV, 8–40
CHPR, 8–42
CHPR2, 8–44
Coding for performance, 1–3, 3–1
Column vector, 2–4
Column-major order, 2–3, 2–7, 3–1
Compiling/linking, 5–1 to 5–2
Complex conjugate, 2–4
COMPLEX data

definition, 2–1
floating-point, 2–2

Complex Hermitian band matrix
definition, 8–10
storage, 8–11

Complex matrix
definition, 8–3

Complex number
complex conjugate, 2–4
definition, 2–7
storage, 2–7

Conjugate gradient method, 12–60, 12–62
biconjugate, 12–67
least squares, 12–64
squared, 12–70

Conjugate transpose, 2–4, 2–5
Continuous Fourier transform, 11–2

see also FFT
mathematical description, 11–2

Convolution
CCONV_NONPERIODIC, 11–91
CCONV_NONPERIODIC_EXT, 11–97
CCONV_PERIODIC, 11–93
CCONV_PERIODIC_EXT, 11–100
DCONV_NONPERIODIC, 11–91
DCONV_NONPERIODIC_EXT, 11–97
DCONV_PERIODIC, 11–93
DCONV_PERIODIC_EXT, 11–100
definition, 11–24
discrete nonperiodic, 11–24
FFT methods, 11–26
mathematical description, 11–24, 11–25
periodic, 11–25
SCONV_NONPERIODIC, 11–91
SCONV_NONPERIODIC_EXT, 11–97
SCONV_PERIODIC, 11–93
SCONV_PERIODIC_EXT, 11–100
summary, 11–27
ZCONV_NONPERIODIC, 11–91
ZCONV_NONPERIODIC_EXT, 11–97
ZCONV_PERIODIC, 11–93
ZCONV_PERIODIC_EXT, 11–100

Copy, 6–23
Copying matrices, 9–22
Correlation

CCORR_NONPERIODIC, 11–94
CCORR_NONPERIODIC_EXT, 11–102
CCORR_PERIODIC, 11–96
CCORR_PERIODIC_EXT, 11–105
DCORR_NONPERIODIC, 11–94
DCORR_NONPERIODIC_EXT, 11–102
DCORR_PERIODIC, 11–96
DCORR_PERIODIC_EXT, 11–105
definition, 11–24
discrete nonperiodic, 11–25
FFT methods, 11–26
mathematical description, 11–25
periodic, 11–25
SCORR_NONPERIODIC, 11–94
SCORR_NONPERIODIC_EXT, 11–102
SCORR_PERIODIC, 11–96
SCORR_PERIODIC_EXT, 11–105
summary, 11–27
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Correlation (cont’d)
ZCORR_NONPERIODIC, 11–94
ZCORR_NONPERIODIC_EXT, 11–102
ZCORR_PERIODIC, 11–96
ZCORR_PERIODIC_EXT, 11–105

Cosine transform
continuous, 11–19
data length, 11–21
data storage, 11–21
definition, 11–18
discrete, 11–19
mathematical description, 11–18 to 11–20

Creating a preconditioner, 12–20, 12–84, 12–86,
12–88, 12–90, 12–92, 12–94, 12–96, 12–98,
12–100

CROT, 6–32
CROTG, 6–34
CSCAL, 6–42
CSCTR, 7–24
CSCTRS, 7–25
CSET, 6–63
CSROT, 6–32
CSSCAL, 6–42
CSUM, 6–64
CSUMI, 7–27
CSVCAL, 6–66
CSWAP, 6–44
CSYMM, 9–24
CSYRK, 9–27
CSYRK2, 9–31
CTBMV, 8–53
CTBSV, 8–55
CTPMV, 8–57
CTPSV, 8–59
CTRMM, 9–37
CTRMV, 8–61
CTRSM, 9–40
CTRSV, 8–63
CVCAL, 6–66
CZAXPY, 6–68

D
DAMAX, 6–53
DAMIN, 6–55
DAPPLY_DIAG_ALL, 12–101
DAPPLY_ILU_GENR_L, 12–114
DAPPLY_ILU_GENR_U, 12–116
DAPPLY_ILU_SDIA, 12–108
DAPPLY_ILU_UDIA_L, 12–110
DAPPLY_ILU_UDIA_U, 12–112
DAPPLY_POLY_GENR, 12–106
DAPPLY_POLY_SDIA, 12–102
DAPPLY_POLY_UDIA, 12–104
DASUM, 6–19
Data format, 11–13

Data formats, 2–2
names, 3–1

Data length, 6–12, 7–7, 8–22, 11–12, 14–4
Cosine/Sine transforms, 11–21

Data storage
array, 2–3
array elements, 2–7
band matrix, 8–9
coding, 3–1
complex number, 2–7
full matrix, 8–3
Hermitian band, 8–11
Hermitian matrix, 8–5
matrix, 8–3
one-dimensional packed storage, 8–6
order of elements, 2–3
size, 2–7
sparse matrix, 12–17
symmetric band, 8–11
symmetric matrix, 8–5
triangular band, 8–13
triangular matrix, 8–8
triangular storage, 8–11
upper-triangular, 8–5

Data structure
array, 2–2
matrices, 2–5 to 12–20
vectors, 2–4 to 7–3

Data structures for FCT/FST, 11–21
Data structures for FFT, 11–13
Data types, 2–1 to 2–2

input, 3–2
precision, 1–1

DAXPY, 6–21
DAXPYI, 7–13
DCONV_NONPERIODIC, 11–91
DCONV_NONPERIODIC_EXT, 11–97
DCONV_PERIODIC, 11–93
DCONV_PERIODIC_EXT, 11–100
DCOPY, 6–23
DCORR_NONPERIODIC, 11–94
DCORR_NONPERIODIC_EXT, 11–102, 11–105
DCORR_PERIODIC, 11–96
DCREATE_DIAG_GENR, 12–88
DCREATE_DIAG_SDIA, 12–84
DCREATE_DIAG_UDIA, 12–86
DCREATE_ILU_GENR, 12–100
DCREATE_ILU_SDIA, 12–96
DCREATE_ILU_UDIA, 12–98
DCREATE_POLY_GENR, 12–94
DCREATE_POLY_SDIA, 12–90
DCREATE_POLY_UDIA, 12–92
DDOT, 6–25
DDOTI, 7–15
Defining a vector in an array, 6–2, 14–2
DFCT, 11–77
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DFCT_APPLY, 11–80
DFCT_EXIT, 11–82
DFCT_INIT, 11–79
DFFT, 11–39
DFFT_2D, 11–48
DFFT_3D, 11–57
DFFT_APPLY, 11–44
DFFT_APPLY_2D, 11–53
DFFT_APPLY_3D, 11–62
DFFT_APPLY_GRP, 11–70
DFFT_EXIT, 11–47
DFFT_EXIT_2D, 11–56
DFFT_EXIT_3D, 11–65
DFFT_EXIT_GRP, 11–73
DFFT_GRP, 11–66
DFFT_INIT, 11–42
DFFT_INIT_2D, 11–51
DFFT_INIT_3D, 11–60
DFFT_INIT_GRP, 11–69
DFST, 11–83
DFST_APPLY, 11–86
DFST_EXIT, 11–88
DFST_INIT, 11–85
DGBMV, 8–29
DGEMA, 9–15
DGEMM, 9–17
DGEMS, 9–20
DGEMT, 9–22
DGEMV, 8–32
DGEMV routine

example using, 3–6
DGER, 8–35
DGTHR, 7–17
DGTHRS, 7–18
DGTHRZ, 7–20
Diagonal of a matrix, 8–8
Diagonal preconditioner, 12–20, 12–84, 12–86,

12–88, 12–101
Diagonal-out storage mode, 13–6, 13–8
Digital filter

attributes, 11–30
description, 11–28
mathematical description, 11–29
nonrecursive filtering, 11–28
transfer function forms, 11–29
types, 11–28

Dimensions of a matrix, 8–21
Direct method, 13–2
Direct solver, 13–51

DSSKYC, 13–62
DSSKYD, 13–69
DSSKYF, 13–54
DSSKYN, 13–51
DSSKYR, 13–65
DSSKYS, 13–59
DSSKYX, 13–73
DUSKYC, 13–93
DUSKYD, 13–103

Direct solver (cont’d)
DUSKYF, 13–84
DUSKYN, 13–80
DUSKYR, 13–97
DUSKYS, 13–89
DUSKYX, 13–108
examples, 13–19

online, 13–19
Direction, 11–2
Discrete Fourier transform

see also FFT
mathematical description, 11–2, 11–3
one dimension, 11–2
three-dimensional, 11–4
two-dimensional, 11–3

DITSOL_DEFAULTS, 12–59
DITSOL_DRIVER, 12–60
DITSOL_PBCG, 12–67
DITSOL_PCG, 12–62

C call example, 12–44
C++ call example, 12–50

DITSOL_PCGS, 12–70
DITSOL_PGMRES, 12–72
DITSOL_PLSCG, 12–64
DITSOL_PTFQMR, 12–75
DMATVEC_GENR, 12–82
DMATVEC_SDIA, 12–78
DMATVEC_UDIA, 12–80
DMAX, 6–57
DMIN, 6–58
DNORM2, 6–59
DNRM2, 6–30
DNRSQ, 6–61
DROT, 6–32
DROTG, 6–34
DROTI, 7–22
DROTM, 6–36
DROTMG, 6–39
DSBMV, 8–37
DSCAL, 6–42
DSCTR, 7–24
DSCTRS, 7–25
DSDOT, 6–25
DSET, 6–63
DSORTQ, 16–5
DSORTQX, 16–6
DSPMV, 8–40
DSPR, 8–42
DSPR2, 8–44
DSSKYC, 13–62
DSSKYD, 13–69
DSSKYF, 13–54
DSSKYN, 13–51
DSSKYR, 13–65
DSSKYS, 13–59
DSSKYX, 13–73
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DSUM, 6–64
DSUMI, 7–27
DSWAP, 6–44
DSYMM, 9–24
DSYMV, 8–46
DSYR, 8–49
DSYR2, 8–51
DSYRK, 9–27
DSYRK2, 9–31
DTBMV, 8–53
DTBSV, 8–55
DTPMV, 8–57
DTPSV, 8–59
DTRMM, 9–37
DTRMV, 8–61
DTRSM, 9–40
DTRSV, 8–63
DUSKYC, 13–93
DUSKYD, 13–103
DUSKYF, 13–84
DUSKYN, 13–80
DUSKYR, 13–97
DUSKYS, 13–89
DUSKYX, 13–108
DVCAL, 6–66
DXML skyline solvers, 13–9
DZAMAX, 6–53
DZAMIN, 6–55
DZASUM, 6–19
DZAXPY, 6–68
DZNORM2, 6–59
DZNRM2, 6–30
DZNRSQ, 6–61

E
Editing code, 3–3
Elements

copy, 6–23
exchange, 6–44
Givens, 6–32, 6–34, 6–36, 6–39, 7–22
maximum absolute value, 6–17, 6–53
maximum value, 6–51, 6–57
minimum absolute value, 6–49, 6–55
minimum value, 6–52, 6–58
multiply by scalar, 6–21, 6–42, 6–66, 6–68,

7–13
nonzero, 7–7
product, 6–25, 6–28, 7–15
rotation, 6–32, 6–34, 6–36, 6–39, 7–22
scale, 6–28, 7–18, 7–25
scatter, 7–24, 7–25
selecting, 7–17, 7–18, 7–20
set to scalar, 6–63
set to zero, 7–20
square root, 6–30
sum, 6–64, 7–27
sum of absolute values, 6–19

Elements (cont’d)
sum of squares, 6–30, 6–59, 6–61
swap, 6–44

Elements of an array, 2–2, 2–7
Environment variables, 5–1
Error handling, 13–15
Errors

BLAS, 6–12
BLAS1S, 7–7
BLAS2, 8–24
BLAS3, 9–9
internal exception, 3–7
iterative solver, 12–25
signal processing, 11–32
VLIB, 14–5

Examples
BLAS Level 1, 6–13
BLAS Level 2, 8–24
BLAS Level 3, 9–9
iterative solver, 12–30
Sparse BLAS Level 1, 7–7
VLIB, 14–5

F
FCT

APPLY step, 11–80
data length, 11–21
data structures, 11–21
DFCT, 11–77
DFCT_APPLY, 11–80
DFCT_EXIT, 11–82
DFCT_INIT, 11–79
EXIT step, 11–82
INIT step, 11–79
one dimension, 11–77, 11–79, 11–80, 11–82
one step, 11–21, 11–23, 11–77
SFCT, 11–77
SFCT_APPLY, 11–80
SFCT_EXIT, 11–82
SFCT_INIT, 11–79
size, 11–20
summary, 11–23
three step, 11–21, 11–23

FFT
APPLY step, 11–44, 11–53, 11–62, 11–70
CFFT, 11–39
CFFT_2D, 11–48
CFFT_3D, 11–57
CFFT_APPLY, 11–44
CFFT_APPLY_2D, 11–53
CFFT_APPLY_3D, 11–62
CFFT_APPLY_GRP, 11–70
CFFT_EXIT, 11–47
CFFT_EXIT_2D, 11–56
CFFT_EXIT_3D, 11–65
CFFT_EXIT_GRP, 11–73
CFFT_GRP, 11–66
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FFT (cont’d)
CFFT_INIT, 11–42
CFFT_INIT_2D, 11–51
CFFT_INIT_3D, 11–60
CFFT_INIT_GRP, 11–69
convolution, 11–26
correlation, 11–26
data format, 11–13
data length, 11–12
data structures, 11–13
DFFT, 11–39
DFFT_2D, 11–48
DFFT_3D, 11–57
DFFT_APPLY, 11–44
DFFT_APPLY_2D, 11–53
DFFT_APPLY_3D, 11–62
DFFT_APPLY_GRP, 11–70
DFFT_EXIT, 11–47
DFFT_EXIT_2D, 11–56
DFFT_EXIT_3D, 11–65
DFFT_EXIT_GRP, 11–73
DFFT_GRP, 11–66
DFFT_INIT, 11–42
DFFT_INIT_2D, 11–51
DFFT_INIT_3D, 11–60
DFFT_INIT_GRP, 11–69
EXIT step, 11–47, 11–56, 11–65, 11–73
group, 11–66, 11–69, 11–70, 11–73
grouped data, 11–11
INIT step, 11–42, 11–51, 11–60, 11–69
one dimension, 11–2, 11–39, 11–42, 11–44,

11–47
one step, 11–13, 11–15, 11–39, 11–48, 11–57,

11–66
SFFT, 11–39
SFFT_2D, 11–48
SFFT_3D, 11–57
SFFT_APPLY, 11–44
SFFT_APPLY_2D, 11–53
SFFT_APPLY_3D, 11–62
SFFT_APPLY_GRP, 11–70
SFFT_EXIT, 11–47
SFFT_EXIT_2D, 11–56
SFFT_EXIT_3D, 11–65
SFFT_EXIT_GRP, 11–73
SFFT_GRP, 11–66
SFFT_INIT, 11–42
SFFT_INIT_2D, 11–51
SFFT_INIT_3D, 11–60
SFFT_INIT_GRP, 11–69
size, 11–4
storing grouped data, 11–11
storing one-dimensional data, 11–5
storing three-dimensional data, 11–8
storing two-dimensional data, 11–6
summary, 11–15
three dimension, 11–57, 11–60, 11–62, 11–65
three dimensions, 11–4

FFT (cont’d)
three step, 11–13, 11–16
two dimension, 11–48, 11–51, 11–53, 11–56
two dimensions, 11–3
valid input, 11–13
ZFFT, 11–39
ZFFT_2D, 11–48
ZFFT_3D, 11–57
ZFFT_APPLY, 11–44
ZFFT_APPLY_2D, 11–53
ZFFT_APPLY_3D, 11–62
ZFFT_APPLY_GRP, 11–70
ZFFT_EXIT, 11–47
ZFFT_EXIT_2D, 11–56
ZFFT_EXIT_3D, 11–65
ZFFT_EXIT_GRP, 11–73
ZFFT_GRP, 11–66
ZFFT_INIT, 11–42
ZFFT_INIT_2D, 11–51
ZFFT_INIT_3D, 11–60
ZFFT_INIT_GRP, 11–69

Filter
types, 11–28

Filters
attributes, 11–30
description, 11–28
mathematical description, 11–29
Nyquist frequency, 11–29
SFILTER_ _INIT_NONREC, 11–111
SFILTER_APPLY_NONREC, 11–113
SFILTER_NONREC, 11–109
summary, 11–32
transfer function forms, 11–29

First dimension of an array, 8–3
Floating point, 1–3
Fortran arrays

description, 2–6
storage, 2–6, 2–7

Fortran code, 3–3
Fortran data types, 2–1 to 2–2
Forward Fourier transform, 11–2

see also FFT
definition, 11–2
mathematical description, 11–3

Forward indexing, 6–3
Fourier transform

see also FFT
continuous, 11–2
data formats, 11–5 to 11–12
data length, 11–12
data storage, 11–5 to 11–12
definition, 11–1
direction, 11–2
discrete, 11–2
mathematical description, 11–1 to 11–4

FST
APPLY step, 11–86
data length, 11–21
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FST (cont’d)
data structures, 11–21
DFST, 11–83
DFST_APPLY, 11–86
DFST_EXIT, 11–88
DFST_INIT, 11–85
EXIT step, 11–88
INIT step, 11–85
one dimension, 11–83, 11–85, 11–86, 11–88
one step, 11–21, 11–23, 11–83
SFST, 11–83
SFST_APPLY, 11–86
SFST_EXIT, 11–88
SFST_INIT, 11–85
size, 11–20
summary, 11–23
three step, 11–21, 11–23

Full matrix storage, 8–3
Function, 6–12, 7–6
Function value, 7–6

G
General band matrix, 8–29

definition, 8–8
storage, 8–9

General matrix, 8–32, 8–35
Generalized minimum residual method, 12–72
GENR, 12–82, 12–88, 12–94, 12–100, 12–106,

12–114, 12–116
GEN_SORT, 16–8
GEN_SORTX, 16–10
Gibbs Phenomenon, 11–31
Givens rotation, 6–32, 6–34, 7–22
Givens transform, 6–36, 6–39
Group FFT

See FFT

H
Hermitian band matrix

definition, 8–10
storage, 8–11

Hermitian matrix, 8–37, 8–40, 8–42, 8–44, 8–46,
8–49, 8–51, 9–24, 9–29, 9–34

definition, 8–4
diagonal elements, 8–5
lower-triangular storage, 8–5
one-dimensional packed storage, 8–6
storage, 8–5
upper-triangular storage, 8–5

I
ICAMAX, 6–17
IDAMAX, 6–17
IDMAX, 6–51
IDMIN, 6–52
Incomplete Cholesky preconditioner, 12–21, 12–96
Incomplete LU preconditioner, 12–21, 12–98,

12–100, 12–108, 12–110, 12–112, 12–114,
12–116

Increment, 6–3, 14–2
zero, 6–4

Index subprograms, 6–17, 6–49, 6–51, 6–52
Input argument, 3–2

data type, 3–2
Input data format, 11–13
Input scalar, 7–7, 8–22
INTEGER data

definition, 2–1
description, 2–2

Internal errors, 3–7
Inverse Fourier transform

see also FFT
definition, 11–2

ISAMAX, 6–17
ISAMIN, 6–49
ISMAX, 6–51
ISORTQ, 16–5
ISORTQX, 16–6
Iterative solver, 12–2, 12–25

DAPPLY_DIAG_ALL, 12–101
DAPPLY_ILU_GENR_L, 12–114
DAPPLY_ILU_GENR_U, 12–116
DAPPLY_ILU_SDIA, 12–108
DAPPLY_ILU_UDIA_L, 12–110
DAPPLY_ILU_UDIA_U, 12–112
DAPPLY_POLY_GENR, 12–106
DAPPLY_POLY_SDIA, 12–102
DAPPLY_POLY_UDIA, 12–104
DCREATE_DIAG_GENR, 12–88
DCREATE_DIAG_SDIA, 12–84
DCREATE_DIAG_UDIA, 12–86
DCREATE_ILU_GENR, 12–100
DCREATE_ILU_SDIA, 12–96
DCREATE_ILU_UDIA, 12–98
DCREATE_POLY_GENR, 12–94
DCREATE_POLY_SDIA, 12–90
DCREATE_POLY_UDIA, 12–92
DITSOL_DEFAULTS, 12–59
DITSOL_DRIVER, 12–60
DITSOL_PBCG, 12–67
DITSOL_PCG, 12–62
DITSOL_PCGS, 12–70
DITSOL_PGMRES, 12–72
DITSOL_PLSCG, 12–64
DITSOL_PTFQMR, 12–75
DMATVEC_GENR, 12–82
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Iterative solver (cont’d)
DMATVEC_SDIA, 12–78
DMATVEC_UDIA, 12–80
examples, 12–30

online, 12–30
general storage, 12–82, 12–88, 12–94, 12–100,

12–106, 12–114, 12–116
list of errors, 12–26
matrix-free, 12–3
preconditioning, 12–2, 12–5
stopping criteria, 12–9
summary, 12–24
symmetric diagonal storage, 12–78, 12–84,

12–90, 12–96, 12–102, 12–108
unsymmetric diagonal storage, 12–80, 12–86,

12–92, 12–98, 12–104, 12–110, 12–112
IZAMAX, 6–17

K
KMP_STACKSIZE, 5–1

L
Languages, 1–2, 3–4

storing arrays, 2–3
LAPACK

expert driver routines, 10–7 to 10–8
naming conventions, 10–3
ordering Users’ Guide, 10–1
simple driver routines, 10–4 to 10–7
viewing Users’ Guide over Internet, xviii

LAPACK equivalence utility, 10–13
Leading dimension of an array, 8–3
Length of a vector, 6–2, 14–2
Level 1 BLAS

see BLAS Level 1
see Sparse BLAS Level 1

Level 2 BLAS
see BLAS Level 2

Level 3 BLAS
see BLAS Level 3

Libraries, 5–1
Location of a matrix, 8–3
Location of a vector, 6–2, 14–2
LOGICAL data

definition, 2–1
description, 2–2

Lower bandwidth, 8–8, 8–10
Lower-triangle packed storage, 8–7
Lower-triangular matrix, 8–8
Lower-triangular storage, 8–5

M
Main diagonal of a matrix, 8–8
Manpage

description of DXML’s manpages, xviii
using DXML’s manpages, xxii
using LAPACK manpages, xxiii

Manpages
command, xxiii

Matrix
addition, 9–1, 9–15, 9–17, 9–24
array, 8–3, 9–8
band, 8–37, 8–40, 8–42, 8–53, 8–55, 8–57,

8–59, 8–61, 8–63
complex Hermitian band, 8–10
copy, 9–22
defining input, 9–7
definition, 2–5
definition of sparse, 12–2
dimensions, 8–21
full storage, 8–3
general, 8–32, 8–35
general band, 8–8, 8–29
Hermitian, 8–4, 8–37, 8–40, 8–42, 8–44, 8–46,

8–49, 8–51, 9–24, 9–29, 9–34
lower-triangular, 8–8
notation, 2–5
packed storage, 8–40, 8–42, 8–44, 8–57, 8–59
product, 8–29, 8–32, 8–37, 8–40, 8–46, 8–53,

8–57, 8–61, 9–1, 9–17, 9–24, 9–37, 12–4
real symmetric band, 8–10
rows and columns, 8–4
size, 8–21, 9–8
sparse, 12–17
storage, 8–3, 9–2
storage of sparse, 12–17
storing complex elements, 8–3
subtraction, 9–1, 9–20
symmetric, 8–4, 8–37, 8–40, 8–42, 8–44, 8–46,

8–49, 8–51, 9–24, 9–27, 9–31
triangular, 8–8, 8–53, 8–55, 8–57, 8–59, 8–61,

8–63, 9–37, 9–40
triangular band, 8–12
update, 9–27, 9–29, 9–31, 9–34
upper-triangular, 8–8

Matrix conjugate transpose
definition, 2–5

Matrix operations, 8–1, 9–1
Matrix transpose

definition, 2–5
Matrix transpose routine, 3–5
Maximum value, 6–57
Minimum value, 6–58
Multiplying matrices, 8–1, 9–1, 9–17, 9–24, 9–37,

12–4
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N
Naming conventions, 13–13
Negative increment or stride, 6–4
Non-Fortran programming languages, 3–4, 3–5
Nonperiodic convolution, 11–24
Nonperiodic correlation, 11–25
Nonrecursive filter

APPLY step, 11–113
INIT step, 11–111
one-step subroutine, 11–109

Nonrecursive filtering, 11–28, 11–29
Nonzero elements, 7–7
Notation

array, 2–3
Nyquist frequency, 11–29

O
OMP_NUM_THREADS, 5–2
One step

FCT, 11–21
FFT, 11–13
FST, 11–21

One-dimensional array, 2–6
Order of operations, 1–3
Order of subprograms

signal processing, 11–107
Output argument, 3–2
Output data format, 11–13

P
Packed storage, 8–6, 8–40, 8–42, 8–44, 8–57, 8–59
Parallel execution environment variable, 5–2
Parallel processing, 4–1

environment variables, 5–1
library

linking, 4–1, 5–1
performance

iterative solver, 4–4
LAPACK, 4–3
level 2 BLAS, 4–3
level 3 BLAS, 4–3
signal processing, 4–4
single processor, 4–3
skyline solvers, 4–4

Performance, 1–3, 3–1
accuracy, 1–3
LAPACK, 10–9

Periodic convolution and correlation, 11–25
Polynomial preconditioner, 12–21, 12–90, 12–92,

12–94, 12–102, 12–104, 12–106
Positive increment or stride, 6–3
Preconditioner, 12–5

diagonal, 12–20, 12–84, 12–86, 12–88, 12–101
Incomplete Cholesky, 12–21, 12–96

Preconditioner (cont’d)
Incomplete LU, 12–21, 12–98, 12–100, 12–108,

12–110, 12–112, 12–114, 12–116
left, 12–6
polynomial, 12–21, 12–90, 12–92, 12–94,

12–102, 12–104, 12–106
right, 12–6
split, 12–7

Product
matrix, 8–1
matrix-matrix, 9–17, 9–24, 9–37, 12–4
matrix-vector, 8–29, 8–32, 8–37, 8–40, 8–46,

8–53, 8–57, 8–61, 12–78, 12–80, 12–82
vector, 6–25, 6–28, 7–15
vector-scalar, 6–42, 6–66

Profile-in storage mode, 13–5, 13–7
Programming languages, 1–2, 3–4

calling DXML, 1–2
storing arrays, 2–3

R
RAN16807, 15–16
RAN69069, 15–14
Rank update, 8–2, 8–16, 8–23, 8–35, 8–42, 8–44,

8–49, 8–51, 9–2, 9–27, 9–29, 9–31, 9–34
RANL, 15–7
RANL_NORMAL, 15–13
RANL_SKIP2, 15–9
RANL_SKIP64, 15–11
REAL data

definition, 2–1
floating-point, 2–2

Real symmetric band matrix
definition, 8–10
storage, 8–11

RNG subprograms
error handling, 15–4
for parallel applications, 15–3
long period uniform, 15–2
normal distribution, 15–3
RAN16807, 15–16
RAN69069, 15–14
RANL, 15–7
RANL_NORMAL, 15–13
RANL_SKIP2, 15–9
RANL_SKIP64, 15–11
standard uniform, 15–2
summary, 15–3

Rotation, 6–32, 6–34, 7–22
Rounding errors, 1–3
Row vector, 2–4
Row-major order, 2–3, 3–1
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S
SAMAX, 6–53
SAMIN, 6–55
SASUM, 6–19
SAXPY, 6–21
SAXPYI, 7–13
Scalar data, 2–1
Scalar value, 6–63, 9–8
Scaling, 6–28
SCAMAX, 6–53
SCAMIN, 6–55
SCASUM, 6–19
SCNORM2, 6–59
SCNRM2, 6–30
SCNRSQ, 6–61
SCONV_NONPERIODIC, 11–91
SCONV_NONPERIODIC_EXT, 11–97
SCONV_PERIODIC, 11–93
SCONV_PERIODIC_EXT, 11–100
SCOPY, 6–23
SCORR_NONPERIODIC, 11–94
SCORR_NONPERIODIC_EXT, 11–102, 11–105
SCORR_PERIODIC, 11–96
SDIA, 12–78, 12–84, 12–90, 12–96, 12–102,

12–108
SDOT, 6–25
SDOTI, 7–15
SDSDOT, 6–28
Setting up data, 2–1
SFCT, 11–77
SFCT_APPLY, 11–80
SFCT_EXIT, 11–82
SFCT_INIT, 11–79
SFFT, 11–39
SFFT_2D, 11–48
SFFT_3D, 11–57
SFFT_APPLY, 11–44
SFFT_APPLY_2D, 11–53
SFFT_APPLY_3D, 11–62
SFFT_APPLY_GRP, 11–70
SFFT_EXIT, 11–47
SFFT_EXIT_2D, 11–56
SFFT_EXIT_3D, 11–65
SFFT_EXIT_GRP, 11–73
SFFT_GRP, 11–66
SFFT_INIT, 11–42
SFFT_INIT_2D, 11–51
SFFT_INIT_3D, 11–60
SFFT_INIT_GRP, 11–69
SFILTER_APPLY_NONREC, 11–113
SFILTER_INIT_NONREC, 11–111
SFILTER_NONREC, 11–109
SFST, 11–83
SFST_APPLY, 11–86

SFST_EXIT, 11–88
SFST_INIT, 11–85
SGBMV, 8–29
SGEMA, 9–15
SGEMM, 9–17
SGEMS, 9–20
SGEMT, 9–22
SGEMV, 8–32
SGER, 8–35
SGTHR, 7–17
SGTHRS, 7–18
SGTHRZ, 7–20
Signal processing errors, 11–32

example, 11–33
messages, 11–34

Sine transform
continuous, 11–19
data length, 11–21
data storage, 11–21
definition, 11–18
discrete, 11–19
mathematical description, 11–18 to 11–20

Size of a matrix, 8–21, 9–8
Skyline solvers, 13–4

usage suggestions, 13–17
SMAX, 6–57
SMIN, 6–58
SNORM2, 6–59
SNRM2, 6–30
SNRSQ, 6–61
Solver, 8–55

matrix, 9–40
triangular, 8–2, 9–2
triangular matrix, 8–59, 8–63

Sort subprograms
DSORTQ, 16–5
DSORTQX, 16–6
error handling, 16–2
general purpose, 16–1
GEN_SORT, 16–8
GEN_SORTX, 16–10
indexed general purpose, 16–1
indexed quick sort, 16–1
ISORTQ, 16–5, 16–6
naming conventions, 16–1
quick sort, 16–1
SSORTQ, 16–5, 16–6
summary, 16–2

Spacing parameter for a vector, 6–3, 14–2
Sparse BLAS Level 1

argument conventions, 7–7
calling subprograms, 7–6
CAXPYI, 7–13
CDOTCI, 7–15
CDOTUI, 7–15
CGTHR, 7–17
CGTHRS, 7–18
CGTHRZ, 7–20
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Sparse BLAS Level 1 (cont’d)
CSCTR, 7–24
CSCTRS, 7–25
CSUMI, 7–27
DAXPYI, 7–13
DDOTI, 7–15
DGTHR, 7–17
DGTHRS, 7–18
DGTHRZ, 7–20
DROTI, 7–22
DSCTR, 7–24
DSCTRS, 7–25
DSUMI, 7–27
examples, 7–7
SAXPYI, 7–13
SDOTI, 7–15
SGTHR, 7–17
SGTHRS, 7–18
SGTHRZ, 7–20
SROTI, 7–22
SSCTR, 7–24
SSCTRS, 7–25
SSUMI, 7–27
summary, 7–4
ZAXPYI, 7–13
ZDOTCI, 7–15
ZDOTUI, 7–15
ZGTHR, 7–17
ZGTHRS, 7–18
ZGTHRZ, 7–20
ZSCTR, 7–24
ZSCTRS, 7–25
ZSUMI, 7–27

Sparse matrix
definition, 12–2
storage, 12–17

Square root, 6–30, 6–59
SROT, 6–32
SROTG, 6–34
SROTI, 7–22
SROTM, 6–36
SROTMG, 6–39
SSBMV, 8–37
SSCAL, 6–42
SSCTR, 7–24
SSCTRS, 7–25
SSET, 6–63
SSORTQ, 16–5
SSORTQX, 16–6
SSPMV, 8–40
SSPR, 8–42
SSPR2, 8–44
SSUM, 6–64
SSUMI, 7–27
SSWAP, 6–44
SSYMM, 9–24

SSYMV, 8–46
SSYR, 8–49
SSYR2, 8–51
SSYRK, 9–27
SSYRK2, 9–31
Starting point for processing a vector, 6–3
Starting point of a matrix, 8–3
STBMV, 8–53
STBSV, 8–55
Storage

Cosine transform, 11–21
Fourier coefficient, 11–5 to 11–12
Fourier transform, 11–5 to 11–12
LAPACK, 10–2
matrix, 8–2, 9–2
Sine transform, 11–21
sparse matrix, 12–17
sparse vector, 7–2
vector, 6–2, 8–2, 14–2

Storage of skyline matrices, 13–5
Storing a vector in an array, 6–5, 14–3
STPMV, 8–57
STPSV, 8–59
Stride, 6–3, 14–2

negative, 6–4
positive, 6–3

String data type, 2–1
STRMM, 9–37
STRMV, 8–61
STRSM, 9–40
STRSV, 8–63
Subdiagonal, 8–8
Subprograms

CAXPY, 6–21
CAXPYI, 7–13
CCONV_NONPERIODIC, 11–91
CCONV_NONPERIODIC_EXT, 11–97
CCONV_PERIODIC, 11–93
CCONV_PERIODIC_EXT, 11–100
CCOPY, 6–23
CCORR_NONPERIODIC, 11–94
CCORR_NONPERIODIC_EXT, 11–102
CCORR_PERIODIC, 11–96
CCORR_PERIODIC_EXT, 11–105
CDOTC, 6–25
CDOTCI, 7–15
CDOTU, 6–25
CDOTUI, 7–15
CFFT, 11–39
CFFT_2D, 11–48
CFFT_3D, 11–57
CFFT_APPLY, 11–44
CFFT_APPLY_2D, 11–53
CFFT_APPLY_3D, 11–62
CFFT_APPLY_GRP, 11–70
CFFT_EXIT, 11–47
CFFT_EXIT_2D, 11–56
CFFT_EXIT_3D, 11–65
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Subprograms (cont’d)
CFFT_EXIT_GRP, 11–73
CFFT_GRP, 11–66
CFFT_INIT, 11–42
CFFT_INIT_2D, 11–51
CFFT_INIT_3D, 11–60
CFFT_INIT_GRP, 11–69
CGBMV, 8–29
CGEMA, 9–15
CGEMM, 9–17
CGEMS, 9–20
CGEMT, 9–22
CGEMV, 8–32
CGERC, 8–35
CGERU, 8–35
CGTHR, 7–17
CGTHRS, 7–18
CGTHRZ, 7–20
CHBMV, 8–37
CHEMM, 9–24
CHEMV, 8–46
CHER, 8–49
CHER2, 8–51
CHER2K, 9–34
CHERK, 9–29
CHPMV, 8–40
CHPR, 8–42
CHPR2, 8–44
CROT, 6–32
CROTG, 6–34
CSCAL, 6–42
CSCTR, 7–24
CSCTRS, 7–25
CSET, 6–63
CSROT, 6–32
CSSCAL, 6–42
CSUM, 6–64
CSUMI, 7–27
CSVCAL, 6–66
CSWAP, 6–44
CSYMM, 9–24
CSYRK, 9–27
CSYRK2, 9–31
CTBMV, 8–53
CTBSV, 8–55
CTPMV, 8–57
CTPSV, 8–59
CTRMM, 9–37
CTRMV, 8–61
CTRSM, 9–40
CTRSV, 8–63
CVCAL, 6–66
CZAXPY, 6–68
DAMAX, 6–53
DAMIN, 6–55
DAPPLY_DIAG_ALL, 12–101
DAPPLY_ILU_GENR_L, 12–114
DAPPLY_ILU_GENR_U, 12–116

Subprograms (cont’d)
DAPPLY_ILU_SDIA, 12–108
DAPPLY_ILU_UDIA_L, 12–110
DAPPLY_ILU_UDIA_U, 12–112
DAPPLY_POLY_GENR, 12–106
DAPPLY_POLY_SDIA, 12–102
DAPPLY_POLY_UDIA, 12–104
DASUM, 6–19
DAXPY, 6–21
DAXPYI, 7–13
DCONV_NONPERIODIC, 11–91
DCONV_NONPERIODIC_EXT, 11–97
DCONV_PERIODIC, 11–93
DCONV_PERIODIC_EXT, 11–100
DCOPY, 6–23
DCORR_NONPERIODIC, 11–94
DCORR_NONPERIODIC_EXT, 11–102
DCORR_PERIODIC, 11–96
DCORR_PERIODIC_EXT, 11–105
DCREATE_DIAG_GENR, 12–88
DCREATE_DIAG_SDIA, 12–84
DCREATE_DIAG_UDIA, 12–86
DCREATE_ILU_GENR, 12–100
DCREATE_ILU_SDIA, 12–96
DCREATE_ILU_UDIA, 12–98
DCREATE_POLY_GENR, 12–94
DCREATE_POLY_SDIA, 12–90
DCREATE_POLY_UDIA, 12–92
DDOT, 6–25
DDOTI, 7–15
DFCT, 11–77
DFCT_APPLY, 11–80
DFCT_EXIT, 11–82
DFCT_INIT, 11–79
DFFT, 11–39, 11–83
DFFT_2D, 11–48
DFFT_3D, 11–57
DFFT_APPLY, 11–44
DFFT_APPLY_2D, 11–53
DFFT_APPLY_3D, 11–62
DFFT_APPLY_GRP, 11–70
DFFT_EXIT, 11–47
DFFT_EXIT_2D, 11–56
DFFT_EXIT_3D, 11–65
DFFT_EXIT_GRP, 11–73
DFFT_GRP, 11–66
DFFT_INIT, 11–42
DFFT_INIT_2D, 11–51
DFFT_INIT_3D, 11–60
DFFT_INIT_GRP, 11–69
DFST_APPLY, 11–86
DFST_EXIT, 11–88
DFST_INIT, 11–85
DGBMV, 8–29
DGEMA, 9–15
DGEMM, 9–17
DGEMS, 9–20
DGEMT, 9–22
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Subprograms (cont’d)
DGEMV, 8–32
DGER, 8–35
DGTHR, 7–17
DGTHRS, 7–18
DGTHRZ, 7–20
DITSOL_DEFAULTS, 12–59
DITSOL_DRIVER, 12–60
DITSOL_PBCG, 12–67
DITSOL_PCG, 12–62
DITSOL_PCGS, 12–70
DITSOL_PGMRES, 12–72
DITSOL_PLSCG, 12–64
DITSOL_PTFQMR, 12–75
DMATVEC_GENR, 12–82
DMATVEC_SDIA, 12–78
DMATVEC_UDIA, 12–80
DMAX, 6–57
DMIN, 6–58
DNORM2, 6–59
DNRM2, 6–30
DNRSQ, 6–61
DROT, 6–32
DROTG, 6–34
DROTI, 7–22
DROTM, 6–36
DROTMG, 6–39
DSBMV, 8–37
DSCAL, 6–42
DSCTR, 7–24
DSCTRS, 7–25
DSDOT, 6–25
DSET, 6–63
DSPMV, 8–40
DSPR, 8–42
DSPR2, 8–44
DSSKYC, 13–62
DSSKYD, 13–69
DSSKYF, 13–54
DSSKYN, 13–51
DSSKYR, 13–65
DSSKYS, 13–59
DSSKYX, 13–73
DSUM, 6–64
DSUMI, 7–27
DSWAP, 6–44
DSYMM, 9–24
DSYMV, 8–46
DSYR, 8–49
DSYR2, 8–51
DSYRK, 9–27
DSYRK2, 9–31
DTBMV, 8–53
DTBSV, 8–55
DTPMV, 8–57
DTPSV, 8–59
DTRMM, 9–37
DTRMV, 8–61

Subprograms (cont’d)
DTRSM, 9–40
DTRSV, 8–63
DUSKYC, 13–93
DUSKYD, 13–103
DUSKYF, 13–84
DUSKYN, 13–80
DUSKYR, 13–97
DUSKYS, 13–89
DUSKYX, 13–108
DVCAL, 6–66
DZAMAX, 6–53
DZAMIN, 6–55
DZASUM, 6–19
DZAXPY, 6–68
DZNORM2, 6–59
DZNRM2, 6–30
DZNRSQ, 6–61
ICAMAX, 6–17
ICAMIN, 6–49
IDAMAX, 6–17
IDAMIN, 6–49
IDMAX, 6–51
IDMIN, 6–52
ISAMAX, 6–17
ISAMIN, 6–49
ISMAX, 6–51
IZAMAX, 6–17
IZAMIN, 6–49
SAMAX, 6–53
SAMIN, 6–55
SASUM, 6–19
SAXPY, 6–21
SAXPYI, 7–13
SCAMAX, 6–53
SCAMIN, 6–55
SCASUM, 6–19
SCNORM2, 6–59
SCNRM2, 6–30
SCNRSQ, 6–61
SCONV_NONPERIODIC, 11–91
SCONV_NONPERIODIC_EXT, 11–97
SCONV_PERIODIC, 11–93
SCONV_PERIODIC_EXT, 11–100
SCOPY, 6–23
SCORR_NONPERIODIC, 11–94
SCORR_NONPERIODIC_EXT, 11–102
SCORR_PERIODIC, 11–96
SCORR_PERIODIC_EXT, 11–105
SDOT, 6–25
SDOTI, 7–15
SDSDOT, 6–28
SFCT, 11–77
SFCT_APPLY, 11–80
SFCT_EXIT, 11–82
SFFT, 11–39
SFFT_2D, 11–48
SFFT_3D, 11–57
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Subprograms (cont’d)
SFFT_APPLY, 11–44
SFFT_APPLY_2D, 11–53
SFFT_APPLY_3D, 11–62
SFFT_APPLY_GRP, 11–70
SFFT_EXIT, 11–47
SFFT_EXIT_2D, 11–56
SFFT_EXIT_3D, 11–65
SFFT_EXIT_GRP, 11–73
SFFT_GRP, 11–66
SFFT_INIT, 11–42, 11–79
SFFT_INIT_2D, 11–51
SFFT_INIT_3D, 11–60
SFFT_INIT_GRP, 11–69
SFILTER_APPLY_NONREC, 11–113
SFILTER_INIT_NONREC, 11–111
SFILTER_NONREC, 11–109
SFST, 11–83
SFST_APPLY, 11–86
SFST_EXIT, 11–88
SFST_INIT, 11–85
SGBMV, 8–29
SGEMA, 9–15
SGEMM, 9–17
SGEMS, 9–20
SGEMT, 9–22
SGEMV, 8–32
SGER, 8–35
SGTHR, 7–17
SGTHRS, 7–18
SGTHRZ, 7–20
SMAX, 6–57
SMIN, 6–58
SNORM2, 6–59
SNRM2, 6–30
SNRSQ, 6–61
SROT, 6–32
SROTG, 6–34
SROTI, 7–22
SROTM, 6–36
SROTMG, 6–39
SSBMV, 8–37
SSCAL, 6–42
SSCTR, 7–24
SSCTRS, 7–25
SSET, 6–63
SSPMV, 8–40
SSPR, 8–42
SSPR2, 8–44
SSUM, 6–64
SSUMI, 7–27
SSWAP, 6–44
SSYMM, 9–24
SSYMV, 8–46
SSYR, 8–49
SSYR2, 8–51
SSYRK, 9–27
SSYRK2, 9–31

Subprograms (cont’d)
STBMV, 8–53
STBSV, 8–55
STPMV, 8–57
STPSV, 8–59
STRMM, 9–37
STRMV, 8–61
STRSM, 9–40
STRSV, 8–63
summary of BLAS Level 1, 6–6
summary of BLAS Level 2, 8–16
summary of BLAS Level 3, 9–3
summary of convolution subroutines, 11–27
summary of correlation subroutines, 11–27
summary of digital filter subroutines, 11–32
summary of FCT functions, 11–23
summary of FFT functions, 11–15, 11–16
summary of FST functions, 11–23
summary of iterative solver routines, 12–24
summary of Sparse BLAS Level 1, 7–4
summary of VLIB, 14–4
SVCAL, 6–66
SZAXPY, 6–68
ZAXPY, 6–21
ZAXPYI, 7–13
ZCONV_NONPERIODIC, 11–91
ZCONV_NONPERIODIC_EXT, 11–97
ZCONV_PERIODIC, 11–93
ZCONV_PERIODIC_EXT, 11–100
ZCOPY, 6–23
ZCORR_NONPERIODIC, 11–94
ZCORR_NONPERIODIC_EXT, 11–102
ZCORR_PERIODIC, 11–96
ZCORR_PERIODIC_EXT, 11–105
ZDOTC, 6–25
ZDOTCI, 7–15
ZDOTU, 6–25
ZDOTUI, 7–15
ZDROT, 6–32
ZDSCAL, 6–42
ZDVCAL, 6–66
ZFFT, 11–39
ZFFT_2D, 11–48
ZFFT_3D, 11–57
ZFFT_APPLY, 11–44
ZFFT_APPLY_2D, 11–53
ZFFT_APPLY_3D, 11–62
ZFFT_APPLY_GRP, 11–70
ZFFT_EXIT, 11–47
ZFFT_EXIT_2D, 11–56
ZFFT_EXIT_3D, 11–65
ZFFT_EXIT_GRP, 11–73
ZFFT_GRP, 11–66
ZFFT_INIT, 11–42
ZFFT_INIT_2D, 11–51
ZFFT_INIT_3D, 11–60
ZFFT_INIT_GRP, 11–69
ZGBMV, 8–29
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Subprograms (cont’d)
ZGEMA, 9–15
ZGEMM, 9–17
ZGEMS, 9–20
ZGEMT, 9–22
ZGEMV, 8–32
ZGERC, 8–35
ZGERU, 8–35
ZGTHR, 7–17
ZGTHRS, 7–18
ZGTHRZ, 7–20
ZHBMV, 8–37
ZHEMM, 9–24
ZHEMV, 8–46
ZHER, 8–49
ZHER2, 8–51
ZHER2K, 9–34
ZHERK, 9–29
ZHPMV, 8–40
ZHPR, 8–42
ZHPR2, 8–44
ZROT, 6–32
ZROTG, 6–34
ZSCAL, 6–42
ZSCTR, 7–24
ZSCTRS, 7–25
ZSET, 6–63
ZSUM, 6–64
ZSUMI, 7–27
ZSWAP, 6–44
ZSYMM, 9–24
ZSYRK, 9–27
ZSYRK2, 9–31
ZTBMV, 8–53
ZTBSV, 8–55
ZTPMV, 8–57
ZTPSV, 8–59
ZTRMM, 9–37
ZTRMV, 8–61
ZTRSM, 9–40
ZTRSV, 8–63
ZVCAL, 6–66
ZZAXPY, 6–68

Subroutine, 6–12, 7–6, 14–4
Subtracting matrices, 9–1, 9–20
Sum, 6–19, 6–64, 7–27
Sum of squares, 6–30, 6–61
Summary of skyline subprograms, 13–14
Superdiagonal, 8–8, 8–11
SVCAL, 6–66
Symmetric band matrix

definition, 8–10
storage, 8–11

Symmetric matrices, 13–5
Symmetric matrix, 8–37, 8–40, 8–42, 8–44, 8–46,

8–49, 8–51, 9–24, 9–27, 9–31
definition, 8–4
lower-triangular storage, 8–5

Symmetric matrix (cont’d)
one-dimensional packed storage, 8–6
storage, 8–5
upper-triangular storage, 8–5

Syntax, 3–2
SZAXPY, 6–68

T
Three step

FCT, 11–21
FFT, 11–13
FST, 11–21

Transfer function form, 11–29
Transpose

definition, 2–4, 2–5
Transpose-free quasiminimal residual method,

12–75
Triangular band matrix

definition, 8–12
storage, 8–13, 8–14

Triangular matrix, 8–53, 8–55, 8–57, 8–59, 8–61,
8–63, 9–37, 9–40

definition, 8–8
storage, 8–8

Triangular solver, 9–2
Triangular storage, 8–11
Two-dimensional array, 2–7

matrix, 8–3

U
UDIA, 12–80, 12–86, 12–92, 12–98, 12–104,

12–110, 12–112
Unsymmetric matrices, 13–6
Update

matrix, 8–42, 8–44, 8–49, 8–51
Updating a matrix, 8–2, 8–16, 8–23, 8–35, 9–2,

9–27, 9–29, 9–31, 9–34
Upper bandwidth, 8–8, 8–10
Upper-triangle packed storage, 8–6
Upper-triangular matrix, 8–8

V
VCOS, 14–9
VCOS_SIN, 14–10
Vector

array, 6–2, 14–2
backward indexing, 6–3, 6–4
defining in an array, 6–2, 14–2
definition, 2–4
definition of sparse vector, 7–3
forward indexing, 6–3
length, 6–2, 14–2
notation, 2–4
product, 6–25, 6–28, 6–42, 6–66
sparse, 7–2
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Vector (cont’d)
storage, 6–2, 14–2

Vector arguments, 7–7, 8–22
Vector conjugate transpose

definition, 2–4
Vector operations

BLAS Level 1, 6–1
sparse, 7–1

Vector transpose
definition, 2–4

VEXP, 14–12
VLIB

argument conventions, 14–4
calling subprograms, 14–4
errors, 14–5
examples, 14–5
summary, 14–4
using routines, 14–1
vector storage, 14–2

VLOG, 14–13
VRECIP, 14–14
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